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Abstract—Accurate satellite-based positioning has revolution-
ized several industries over the past two decades, from agricul-
ture to transportation. However, conventional GNSS receivers
consume significant energy and are too large for many wildlife-
tracking applications, which are of critical importance to con-
servation efforts and our understanding of the global climate.
To address this capability gap, we propose a new positioning
system designed from the outset to minimize the size, mass,
power, and cost of the terrestrial tracking device. We analyze,
through extensive modeling and simulation, a mission concept
that relies on space-based receivers hosted on a constellation of
small satellites in low-Earth orbit that detect and localize signals
from very small transmitter tags. We compare a variety of signal
modulations, frequencies, and positioning techniques, including
both Doppler and time-of-arrival methods, and evaluate the
transmitter power required, minimum number of satellites, and
achievable position accuracy across a range of design param-
eters. Our model accounts for errors in satellite orbital state
knowledge, clock offsets, frequency measurement errors, and
ionospheric effects. This paper presents the results of our
extensive trade study, as well as hardware field experiments per-
formed outdoors using flight-traceable software-defined radio
receivers.
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Figure 1. Field testing results overlaid on a satellite photo
of the test site. The yellow line shows ground-truth GPS
measurements while the red dots are positions calculated

with our time-of-arrival system. The RMS difference
between our system and GPS is approximately 22.6 meters.

1. INTRODUCTION
Satellite-based positioning emerged in the 1960s with the
development of TRANSIT, a satellite-navigation system that
utilized the Doppler shift induced by relative motion between
satellites and terrestrial receivers to provide infrequent posi-
tion updates for Polaris ballistic missile submarines [1]. The
need for continuous positioning led to the development of
the global positioning system (GPS), which currently consists
of a thirty-one-satellite constellation in medium-Earth orbit
using time-of-arrival measurements to provide positioning
information [2]. GPS has impacted a wide range of do-
mains, from agriculture to transportation, by providing high-
accuracy positioning information. However, the size, weight,
energy consumption, and cost of GPS receivers limits their
use in many applications, including wildlife tracking, which
is essential for our understanding of the global climate, as
species migration is an important indicator of climate change
[3]. Conservation efforts for endangered species also benefit
from accurate wildlife position data [4] [5].

Another approach to wildlife tracking, ARGOS, relies on
Doppler-based positioning like TRANSIT [6]. While AR-
GOS reports achievable position accuracies in the range of
150 m - 2500 m, field testing on sea turtles [7] and bottlenose
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dolphins [8] equipped with both GPS and ARGOS tags have
demonstrated that errors are most commonly in the kilometer
range. The cost of ARGOS transmitting tags range from
$1500-$4000, which limits for large-scale deployments [6],
and the smallest ARGOS tags weigh around 5 grams [9],
however they deliver very few position fixes. The Icarus
Initiative is another small-animal tracking system that uses
a reciever hosted on the International Space Station (ISS)
to gather position data recorded by GPS receivers onboard
ICARUS tags, in addition to temperature, pressure, and ac-
celerometer data, to observe animal behavior and monitor the
environment [10].

To address the cost, accuracy, and size limitations of existing
methods, we propose a new approach to wildlife tracking
that relies on space-based receivers hosted on a constellation
of small satellites in low-Earth orbit that detect and localize
signals from very small transmitting tags. The transmitting
tags are lightweight, low-cost, and consume minimal energy
[11]. In this work, we analyze, through extensive modeling
and simulation, the positioning accuracy that can be achieved
by a small-satellite constellation receiving signals from very
small, light-weight transmitting tags placed on animals. Our
contributions include:

• A Kalman filtering approach to estimate the position and
velocity of a low-Earth orbit (LEO) satellite to very high
accuracy from GPS measurements.
• A unified algorithmic approach for tag localization using a
combination of Doppler and time-of-arrival (TOA) measure-
ments.
• Full end-to-end system modeling and a constellation-
design trade study.
• Hardware validation of flight-traceable receivers and tags
in outdoor field tests.

The paper proceeds as follows: We introduce measurement,
dynamics, and error models in Section 2. Next, we describe
candidate system architectures in Section 3, and present a
detailed description of the navigation algorithms used for the
simulations in Section 4. A software modeling tool to aid
in constellation geometry design is then detailed in Section
5, followed by trade-study outcomes in Section 6. Section
7 presents the results of outdoor hardware validation tests.
Finally, Section 8 summarizes our conclusions and directions
for future work.

2. BACKGROUND
This section describes the measurement models used for
tracking, along with the satellite dynamics model utilized in
the extended Kalman filter to determine the satellite’s orbital
state.

TOA Measurement Model

Time-of-arrival systems measure the transit time of the signal
from the transmitting tag to the receiver onboard the satellite.
The satellite and transmitter clocks are not synchronized;
therefore, the measurement is biased. The TOA measurement
model is described by,

ρ = ctm = ||r⃗tag −Ar⃗sat||+ cτ + Iρ + η, (1)

A =

[
cosωEtm sinωEtm 0
−sinωEtm cosωEtm 0

0 0 1

]
, (2)

where ρ is known as a “pseudorange,” tm represents the
transit time, rtag is the position of the transmitting tag in
the Earth-centered-Earth-fixed (ECEF) frame, rsat is the
position of the satellite in the Earth-centered-inertial (ECI)
frame, τ represents the clock bias, Iρ is the delay caused
by the ionosphere, η represents random noise due to sensor
uncertainty, c is the speed of light in a vacuum, and A is a
rotation matrix to transform the position of the satellites (rsat)
from the ECI frame to the ECEF frame at the receiving time.
This transformation considers the magnitude of the Earth’s
rate of rotation (ωE), along with the transit time of the signal.
This rotation of the Earth during signal transit is small, but
can introduce an error of 10-20 m in the range computation,
which induces an east-west error in the position estimate [2].
Using this model, we estimate the position of the tag (rtag) in
Cartesian coordinates in the ECEF frame as well as the clock
bias (τ ).

Doppler Measurement Model

The Doppler measurement model records the change between
the transmitted and received frequencies (∆f) that occurs
due to the relative motion of the spacecraft with respect to
the tag (Doppler shift). This measurement depends on the
time derivative of (1) and the transmitted frequency (f0).

∆f = f0

∂
∂t (||r⃗tag −Ar⃗sat||)

c
+ ḃ+ İρ + η (3)

Similar to (1), we estimate the position of the tag (rtag) in
Cartesian coordinates as well as a frequency offset term (ḃ). A
derivation of the time derivative of the true range is provided
in the Appendix.

Ionospheric Effects

The ionosphere is a region of the atmosphere extending from
about 50 to 1000 km altitude that is ionized by radiation from
the sun. The physical characteristics of the ionosphere vary
over a large range and are unpredictable [2]. The ionosphere
can be modeled as a thin shell at a height hE above the Earth,
producing a delay in the pseudorange measurement modeled
by,

Iρ =
40.3TECV

f2

[
1−

(
RE sin(ζ)

RE + hI

)2
]−1

2

, (4)

where ζ is the zenith angle of the satellite, RE is the radius of
the Earth, f is the frequency of the signal, and TECV is the
total electron count (TEC) value in the zenith direction [2].
The effect of the ionosphere on Doppler measurements is the
time derivative of the delay in (4):

İρ =
(40.3TECV )

(
(RE sin(ζ))(RE cos(ζ)ζ̇)

(RE+hI)2
)
)

f2
(
1− (RE sin(ζ)

RE+hI
)2
) 3

2

. (5)

Satellite Dynamics

We perform ground-truth simulations of the satellite’s orbital
dynamics using the open-source Julia package SatelliteDy-
namics.jl, which includes high-order gravity models, n-body

2



effects due to the sun and moon, atmospheric drag force,
and solar radiation pressure [12]. However, computing the
Jacobian of this high-fidelity dynamics model is expensive
and unnecessary onboard a satellite. Therefore, we use a sim-
plified dynamics model that only considers the gravitational
force up to J2 and the drag force as the process model in the
estimation algorithms that follow. The acceleration due to
gravity is given by:

a⃗J2 =
−µr⃗sat
||r⃗sat||3

+

3µJ2R
2
E

2||r⃗sat||5

(
5(r⃗sat · I⃗z)2

||r⃗sat||2
− 1

)
r⃗sat − 2(r⃗sat · I⃗z)I⃗z

(6)

where RE is the radius of the Earth, J2 is the harmonic coef-
ficient due to the oblateness of the Earth, µ is the gravitational
parameter, and I⃗z corresponds to the unit vector pointing in
the z direction [13].

Similarly, the drag force is modeled by,

a⃗d = −1

2
ρaAccd||v⃗r||v⃗r, (7)

where,
v⃗r = v⃗sat − ω⃗E × r⃗sat (8)

where Ac represents the cross-sectional area in the direction
of incoming flow, ρa is the atmospheric density, cd is the
drag coefficient, and vr is the spacecraft velocity relative to
the atmosphere expressed in (8). The relative velocity v⃗r is
dependent on the angular rate of rotation of the Earth (ω⃗E)
along with the satellite velocity (v⃗sat) and satellite position
(r⃗sat) in Cartesian coordinates. We assume a constant cross-
sectional area (Ac).

3. CANDIDATE SYSTEM ARCHITECTURES
We evaluate several candidate system architectures: four
satellites performing TOA measurements, four satellites per-
forming Doppler measurements, and seven satellites perform-
ing Doppler measurements. Each architecture requires the
satellites to fly in formation, as depicted in Fig. 2. We also
analyze single- and dual-frequency versions of each of these
architectures.

Time-of-Arrival Formations

The TOA method requires precision timing from multiple re-
ceivers with synchronized clocks. We assume clock synchro-
nization errors of 20 ns based on hardware tests conducted in
[3].

The use of a single frequency for TOA measurements pro-
duces biased tag position and clock bias estimates due to
ionospheric effects. Using two frequencies enables estima-
tion of the ionosphere TEC value and elimination of this bias,
resulting in improved accuracy.

Doppler-Based Formations

The Doppler method does not rely on precise time syn-
chronization between receiver clocks, but requires extremely

precise frequency references [2]. Oscillator frequency insta-
bility produces significant tag-position errors. We assume
frequency errors around 1 Hz.

Because it depends on the difference in velocity between
transmitter and receiver, the Doppler method is also very
sensitive to tag motion, and assume a stationary tag. Modest
tag motion can induce a large position bias. These effects can
be mitigated by introducing more satellites: A four-satellite
Doppler system can estimate out the tag position along with
a frequency bias term, and a seven-satellite Doppler system
can additionally estimate out the velocity of the tag.

Table 1 summarizes the system architectures that are consid-
ered, along with a number label to reference these architec-
tures in Section 6.

Table 1. Candidate System Architectures

Label Configuration

1 4 Satellites TOA 1 frequency
2 4 Satellites TOA 2 frequencies
3 4 Satellites Doppler 1 frequency
4 4 Satellites Doppler 2 frequencies
5 7 Satellites Doppler 1 frequency
6 7 Satellites Doppler 2 frequencies

Section 6 will evaluate the positioning performance for each
of the system architectures.

Figure 2. Tag horizon (grey) with the vectors (red)
depicting the true range between the satellite and the tag

position in the ECEF frame

4. NAVIGATION ALGORITHMS
We address two facets of the navigation problem posed in
this paper: Estimating tag positions given precise satellite
positions and tag signal measurements, and estimating the
satellite positions and velocities with very high accuracy from
GPS measurements. We begin with the latter in this section.

Satellite GPS Filter

We determine the state of the satellites using a square-root
extended Kalman filter (SREKF). First, a reference orbit is
generated using an accurate dynamics model with gravity
order 10 and degree 10 using SatelliteDynamics.jl [12]. Next,
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we generate simulated GPS measurements by adding Gaus-
sian noise with a standard deviation of 10m to the reference
orbit positions. The filter’s process model consists of satellite
dynamics that only consider the gravitational force, J2, and
drag described in (12). Since we utilize a simplified dynam-
ics model, we also estimate out the truncated higher-order
accelerations because they do not behave like additive white
Gaussian noise. We model these accelerations (ε⃗) as a first-
order Gauss-Markov model expressed by the following:

˙⃗ε = −B(t)ε⃗+ w(t)

w(t) ∼ N (0, Qε)
(9)

where B(t) is a 3 × 3 time-correlation matrix, which is a
diagonal matrix of the time correlation coefficients (β ∈ R3).
These time correlation coefficients are also added to the state
and we assume they follow a random walk model:

β̇ = u(t)

u(t) ∼ N (0, Qβ)
(10)

This method is known as dynamic model compensation
(DMC) and it has been shown to provide more accurate state
estimates for lunar satellites using Apollo 10 [14] and near-
Earth orbiter data [15]. Model errors are always present
due to uncertainties in atmospheric density models, variations
in solar radiation pressure, and tidal forces, etc [15]. The
disadvantage of this method is an increase in the size of the
EKF state vector, resulting in increased computational cost
[16].

The filter state, denoted as x, includes the satellite position
(r⃗sat), velocity (v⃗sat), as well as the unmodeled accelerations
(ε⃗), and time correlation parameters (β):

x =

r⃗satv⃗sat
ε⃗
β

 ∈ R12 (11)

The continuous nonlinear dynamics model is as follows:

ẋ =


v⃗sat

a⃗gJ2 + a⃗d + ε⃗
˙⃗ε
β̇

 (12)

We assume the measurement model provides the position of
the satellite and is represented by the following:

h(x) = [I(3) 03×6]x (13)

We use an analytical representation of the process noise
covariance derived in [17], and the simulation timestep is set
to 1 s. We implement an SREKF using the QR decomposition
to handle covariance updates [18]. This variant of the Kalman
filter has better numerical properties than alternative square-
root formulations, is described in Algorithm 1. The process-
and measurement-noise covariance matrices are also repre-
sented using their upper-triangular Cholesky factorizations
throughout the filter (ΓW ,ΓV ). The nonlinear dynamics (f )
are linearized and evaluated at the corrected mean to create
a prediction step, and we assume there are no control inputs
from the spacecraft. We show simulation results using the
SREKF in Section 6.

Algorithm 1 QR Extended Kalman Filter
1: function QR EKF(µt|t, Ft|t, yt+1, C,ΓW ,ΓV )
2: ▷ State Prediction
3: µt+1|t = f(µt|t)
4: ▷ Linearize
5: A = ∂f

∂x |µt+1|t

6: ▷ Covariance Prediction
7: Ft+1|t = qr(Ft|tA

T ,ΓW )
8: ▷ Measurement Innovation
9: z = yt+1 − Cµt+1|t
10: ▷ Innovation Covariance
11: G = qr(Ft+1|tC

T ,ΓV )
12: ▷ Kalman Gain
13: L = [G−1(G−TC)FT

t+1|tFt+1|t]
T

14: ▷ State Update
15: µt+1|t+1 = µt+1|t + Lz
16: ▷ Covariance Update
17: Ft+1|t+1 = qr(Ft + 1|t(I − LC)T ,ΓV L

T )
18: end function

Tag State Covariance

We calculate the tag state covariance using two methods: a
Monte-Carlo method with 1000 samples, and a linearized
error propagation using the measurement Jacobian.

The Monte-Carlo method computes each sample by adding
noise to the satellite positions and measurements to simulate
the satellite state uncertainties and measurement errors. The
noise on the satellite position was sampled from a Gaussian
with the covariance obtained from the SREKF. We generate
a set of ground truth measurements with (1) and (3) and
use a root-finding method to compute tag positions from the
noisy measurements. We use Newton’s method along with an
Armijo line search detailed in Algorithm 2. The parameters
φ, b, α in Algorithm 2 are tuned to ensure the algorithm
decreases the residual at every step. Finally, we compute the
mean (µ) and covariance (Σ) of the tag positions and compare
them to ground truth. The metric we use to determine the
position tracking accuracy is the root mean squared (RMS)
error:

RMS =
√
Tr(Σ3×3). (14)

Algorithm 2 Newton’s Method with Armijo Line Search
zt = h(xt) ▷ Generate truth measurements

2: function NEWTON(x0)
while ||r||| ≥ tol do

4: r = f(x0)− zt ▷ Compute Residual
J = ∂r

∂x |x0 ▷ Residual Jacobian
6: ∆x = J\ − r

while ||r(x0 +∆x)|| > ||r(x0 + bαJ∆x)|| do
8: α = φα ▷ Armijo Line Search

end while
10: x0+ = α∆x ▷ Apply Step

end while
12: end function

In the linearized error-propagation method, we linearize the
nonlinear measurement-residual function using a first-order
Taylor expansion use the resulting Jacobian matrix A to map
the covariance of the satellite state and measurements into the
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covariance on the tag position:

Ptag = APsatA
T (15)

The Jacobian A is obtained using the implicit function theo-
rem and a derivation is provided in the Appendix.

5. SOFTWARE-MODELING TOOL
We have developed an interactive software-modeling tool to
visualize the effects of satellite constellation geometry on tag-
position error. This tool allows the user to change orbital
parameters, including altitude, right ascension of the ascend-
ing node (RAAN), and true anomaly separation between the
satellites. The user can also vary the tag latitude to observe
tag-position error at different latitudes. Measurement noise
(timing and frequency accuracy) can also be adjusted based
on the hardware specifications of the sensors onboard the
satellite. The tool outputs a two-sigma covariance ellipse in
the tag’s local north-east-up coordinate system for both TOA
and Doppler architectures. Fig. 25 in the Appendix shows
the layout of the tool, which is open source and available
at the following link: https://github.com/vegaf1/
SatelliteNavigation.jl

6. RESULTS
SREKF Results

The results of the satellite trajectory estimate over five orbits
are shown in Figs. 3, 4, 5. These plots only consider the
x-component of position, velocity, and acceleration, while
all components are shown in the Appendix. All errors are
bounded by the three-sigma envelope from the filter’s co-
variance estimate, which indicates that the filter is consistent.
The RMS error of the satellite position was 1.237 m, which
is nearly an order-of-magnitude improvement upon the raw
GPS measurements.
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Figure 3. Orbital position errors (x-component) from
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Architecture Trade Study Results

We determine a base satellite configuration to evaluate the
performance of all the architectures in Table 1. The mea-
surement accuracy was set to be the same among all the
architectures. Fig. 6 depicts the standard variables a user can
change to modify the satellite geometry, and the orbit altitude
can also be modified depending on the mission requirements.
The satellites are placed on polar orbits, and the tag is located
near the equator with the longitude in between the polar
orbits. The configuration for the set of results in Figs. 7
and 8 is an altitude of 500 km, a 2 degree separation in right
ascension of the ascending node, a 10 degree true anomaly
separation (θsep), and a 3 degree true anomaly separation
between the first satellites placed in each orbit (∆θsep). For
the architectures with one frequency, 400 MHz was used,
and the dual-frequency architectures used 400 MHz and 600
MHz. The RMS tag-position error was calculated at discrete
time steps along the orbit in which all the satellites are in the
70◦ horizon of the tag as shown in Fig. 2. This accuracy
was computed using the Monte Carlo method described in
Section 4. Once the satellites are out of the horizon of the
tag, the algorithm returns the minimum RMS tag-position
error among all the time steps in the horizon. The RMS tag-
position error and bias are shown for all the architectures in
Fig. 7 and Fig. 8 (the architectures are referenced by the
labels in Table 1). Overall, the four-satellite dual-frequency
case resulted in the best performance, with an RMS tag-
position error of 60.83 meters and a bias of 1.89 meters.

The TOA method is consistently superior to the Doppler
method, which we attribute to the relative sensitivity of the
Doppler method to frequency measurement errors, as well as
the effect of the ionosphere, which induces a frequency error
of around 10 Hz, as shown in (5). Using two frequencies
reduces the position bias in both methods.

The satellite configuration geometry also dramatically affects
tracking performance. An analysis of these effects was
performed by modifying one of orbital variable (e.g. RAAN
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Figure 6. Satellite constellation in LEO for tracking

separation) by small increments while keeping the rest of the
geometry variables constant. These tests were performed on
the four-satellite TOA with two frequency architecture and
the results are shown in Figs. 9-11. This analysis shows
that a near-optimal configuration that minimizes tag-position
error consists of a RAAN separation of approximately three
degrees, a true anomaly separation of roughly eight degrees,
and a delta-true-anomaly separation as large as possible.
Increasing the delta true anomaly reduces the amount of time
all satellites are in view of the tag simultaneously. Therefore
a careful trade-off must be made.

For dual-frequency architectures, the separation between the
frequencies also affects the tag-position error. Fig. 12 shows
this effect; the greater the frequency separation, the lower the
tag-position error. However, large separations in frequency
are infeasible due to hardware and regulatory constraints.

The major source of uncertainty for all architectures is mea-
surement noise. An analysis of these effects on the tag-
position error is shown in Fig. 13-14. The tag transmit time
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Figure 7. RMS tag-position error and bias for TOA-based
satellite configurations
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Figure 8. RMS tag-position error and bias for
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is inversely proportional to the uncertainty in the frequency
measurement for Fig. 14.

7. EXPERIMENTAL VALIDATION
As a proof-of-concept validation for the recommended TOA
method, field testing was completed in Boulder, CO, as illus-
trated in Fig. 1. In the experiment, a simpler single-frequency
architecture was used with the goal of demonstrating the
capabilities of the system on a smaller scale. In this section,
we discuss the data processing and analysis methods used in
the experiment, as well as their applicability and relevance to
the full system.
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Experimental Design

Four receivers, named and henceforth referred to as Astro, El-
roy, Jane, and Judy, were placed in a roughly trapezoidal con-
figuration spaced 400-1000m from their nearest neighbors.
All receivers were approximately co-planar, limiting location
determination to two dimensions, instead of full positioning
including altitude. In the center of the receiver constellation
sat a broadcasting beacon with a known location, which was
used to perform receiver clock synchronization. During test-
ing, a simulated animal tag was moved around the field site
for approximately one hour. The beacon emitted signals at a
frequency of 0.1 Hz, while the tag transmitted at 1 Hz, and the
receivers collected data with a bandwidth of 2.8 MHz. This
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Figure 12. RMS tag-position error as the frequency
separation in a dual-frequency architecture increases

yielded approximately one billion data samples per receiver
over the testing time. The animal tag also collected accurate
GPS data for later use in determining location residuals. For
ease of computation in this scaled-down model, a local east-
north-up coordinate system was employed in collecting and
comparing data.

Data Processing

Following data collection, the first step in the processing se-
quence was correlating the raw data collected by the receivers
with the known signals broadcast by the tag and beacon. Both
transmitters emitted signals encoded with pseudo-random
number (PRN) Gold codes, which are widely utilized in GPS
applications because of their low, bounded cross-correlation
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Figure 14. RMS tag-position error as the tag transmit time
increases. This was tested on the dual-frequency Doppler

architecture.

between unique instances [2]. This makes it possible to
broadcast several codes across the same frequency range with
little interference. The Gold codes used in this experiment
were 1023 bits in length.

Cross correlations were computed between the recorded data
from all four receivers and the known tag and beacon Gold
codes. Because of the pseudo-random nature of the Gold
codes, this process outputs clear spikes when the two codes
align (indicating that the receiver has received the transmitted
signal), and noise at all other times, as illustrated in Fig. 15.

Following cross correlation, the times associated with each
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Figure 15. A sample set of peaks from the astro tag signal.
Parabolic curve fitting is inset to visualize the peak

determination process.

correlation peak must be computed for use in later TOA
calculations. Parabolic curve fitting was used to identify
peaks with sub-sample accuracy. Then, absolute time offsets
between the receivers were determined using the known lo-
cation of the broadcasting beacon and a simple time-of-flight
calculation. Adding these offsets to the recorded tag peaks
ensures that they are properly aligned to the same absolute
time reference.

The final step in the data processing sequence was to calculate
the locations of the tag. This process begins by identifying
peaks from all receivers that correspond to the same tag
pulse. Because the tag broadcasts at a predictable rate, the
projected arrival times can be easily identified. However,
it is expected that each receiver measures the same peak at
a slightly different time. Tag positions are then calculated
using the TOA method and the determined arrival times.
The nonlinear least-squares problem was solved using the
Levenberg-Marquardt algorithm. All signal processing was
performed in MATLAB.

Predicted Outcomes

Using the parameters of the experimental setup, predicted
outcomes were determined before data collection began to
establish a benchmark for desired bounds on the position
error. To do this, the Implicit Function Theorem was em-
ployed to determine location covariance based on a set of
input variables θ, which included receiver positions, offsets,
and signal arrival times. Each of these input variables was
assigned an estimated variance based on unavoidable real-
world measurement error in defining them; notably, 10 meters
was used for each xy position, while

√
0.1 microseconds was

used for every time evaluation. A tag position x was also
established to allow for the calculation of the residual value
r(x, θ).

This method produced expected variances for each of the
receiver positions between 3 and 5 meters, and time errors
on the order of 1×10−4 microseconds. Notably, variances in
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the y dimension (µ = 4.85) were slightly higher than those
in the x dimension (µ = 4.05), likely due to limitations in
the experimental setup. Namely, the testing site is configured
such that the receivers are placed further apart in x than
they are in y, allowing for less precision in the North/South
dimension than it does in the East/West direction.

Taken together, these data suggest unavoidable variance in
the TOA calculations between 0.1 and 0.5 microseconds,
depending on the receiver. This translates to location errors
between 40 and 120 meters for each receiver independently,
although the use of all four will likely reduce those values
for overall location prediction. As such, data analysis was
performed with an expectation of unavoidable error on the
order of 10m.

Analysis

The final predicted location set is plotted alongside the actual
GPS data for the tag in Fig. 18. This graph depicts a simple
distance from the local origin, taking into account both x and
y coordinates simultaneously. Plotted alongside these points
are two additional lines depicting a 10-point moving average
of the standard deviation of the set, which is approximately
22.6 meters.

Fig. 1 presents a more complete picture of position error
in two dimensions, as opposed to a simple distance. In
that image, it is clearer to discern where exactly predicted
locations vary from actual locations, particularly in the places
near the Jane and Judy receivers. In fact, there is a small
section of path just to the left of the Judy receiver for which
there are no location predictions, which represents one of
the noisiest sections of data where clean tag peak sets could
not be discerned. Similarly, location predictions vary greatly
from the actual path just above the Jane receiver, which could
be due to a similar noise problem.
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Figure 16. Histogram demonstrating the difference in
residual distributions in the local x (East/West) and y

(North/South) directions.

In terms of actual location residuals, Fig. 16 and Fig. 17
provide histograms of the residuals in the x and y dimensions
independently, as well as the total residual values congruent

with Fig. 18. Beginning with Fig. 16, it is clear to see that
the residual distributions follow an expected normal pattern.
This also corroborates the result from Fig. 18, where at least
95% of the data appear to fall within the 2-standard-deviation
bounds.
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Figure 17. Histogram of total residuals.

Fig. 16 also demonstrates that there is far less error in the
x direction (σ = 13.002m) than there is in the y direction
(σ = 24.476m). This can likely be attributed to a few factors,
beginning with the same noise issue identified in Fig. 1.
Particularly, the set of outliers on the left end of the histogram
clearly maps to the errors above the Jane receiver. This
result also reflects the limitations of the experimental setup
as predicted by the covariance analysis.

Finally, Fig. 17 provides a total residual histogram, again
illustrating the expected normal distribution. The overall
standard deviation for the set, σ = 22.605m is well within
an acceptable range for the goals of the experiment, partic-
ularly considering the square kilometer of the testing area.
Returning to the earlier analysis of predicted variances, it is
also clear to see that the results here reasonably match with
the magnitude of error that was expected. This indicates that
our methods of data processing and analysis are accurate and
work well, as only nominal new error was introduced. Look-
ing forward, this experiment therefore validates the proposed
design, at least within its limited scope that does not include
ionospheric interference.

8. CONCLUSIONS
We have presented an end-to-end simulation of a space-based
wildlife-tracking system, a constellation-design trade study,
a unified open-source package to test user-defined satellite
geometries using both architectures, and outdoor hardware
validation experiments. The four-satellite dual-frequency
TOA architecture is recommended due to its superior perfor-
mance and relatively low system complexity. This method of
tracking provides better accuracy than ARGOS, and is more
cost effective, as the proposed satellites for this mission are
nanosatellites and the transmitting tags are lightweight, low-
power, and low-cost. We also present preliminary results for

9



0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 2,200 2,400 2,600
−100

0

100

200

300

400

500

600

Elapsed Time from First Astro Peak (s)

D
is

ta
nc

e
fr

om
L

oc
al

O
ri

gi
n

(m
)

Predicted vs Actual Locations

Tag GPS Data
Predicted Locations
2σ, 10 Pt. Moving Average
-2σ, 10 Pt. Moving Average
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hardware validation of flight-traceable receivers and tags in
outdoor field tests that demonstrate the capabilities of the
system on a smaller Earth-bound scale.

Future work includes implementing a batch least-squares
solution to the satellite state estimation problem, which may
improve state estimates. Exploring architectures with more
than four satellites is another possibility to explore, as this
may further reduce errors and enable estimation of more
bias terms. Finally, we will seed space-based validation
experiments of our TOA method on future small-satellite
missions.
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APPENDICES

A. IMPLICIT FUNCTION THEOREM
The Implicit Function theorem was used to find the Jacobian
that relates the satellite positions and the tag positions. The
derivation is shown below.

x = [xtag ytag ztag b]

y = [xsat ysat zsat f ]

f(x, y) =
∂f

∂x
∆x+

∂f

∂y
∆y

∆x = −(
∂f

∂x
)−1 ∂f

∂y
∆y

A = −(
∂f

∂x
)−1 ∂f

∂y

Ptag = APsatA
T

B. DOPPLER DERIVATIONS
The Doppler measurement model is dependent on the time
derivative of the pseudo range and the derivation for this term

is shown below.

r =
√
(rtag −Arsat)T (rtag −Arsat)

r = ((rTtag − rTsatA
T )(rtag −Arsat))

1
2

r = (rTtagrtag − rTtagArsat − rTsatA
T rtag + rTsatA

TArsat)
1
2

r = (rTtagrtag − 2rTtagArsat + rTsatrsat)
1
2

ṙ =
1

2||rtag −Arsat||
(rTtag ṙtag + ṙTtagrtag − 2(ṙTtagArsat

+ rTtagȦrsat + rTtagAṙsat) + rTsatṙsat + ṙTsatrsat)

ṙ =
1

2||rtag −Arsat||
(rTtag ṙtag + ṙTtagrtag − 2ṙTtagArsat

− 2rTtagȦrsat − 2rTtagAṙsat + rTsatṙsat + ṙTsatrsat)

ṙ =
1

2||rtag −Arsat||
(rTtagvtag + vTtagrtag − 2vTtagArsat

− 2rTtagȦrsat − 2rTtagAvsat + rTsatvsat + vTsatrsat)

C. ADDITIONAL PLOTS
The additional residual plots in Figs. 19, 20, 21, 22, 23, and
24 show the consistency of the filter in y and z dimension
for position, velocity, and unmodeled acceleration estimation
of a low-earth orbiting satellite. Fig. 25 displays the layout
of the interactive software modeling tool used to obtain
the tag-position error using both TOA method and Doppler
measurement models given a satellite constellation geometry
and sensor accuracies.
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Figure 25. Interactive software modeling tool that outputs the uncertainty in the tag estimate based off the user defined
satellite configuration.
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