
Derivative-Free Trajectory Optimization with Unscented
Dynamic Programming

Zachary Manchester and Scott Kuindersma

Abstract— Trajectory optimization algorithms are a core
technology behind many modern nonlinear control applications.
However, with increasing system complexity, the computation
of dynamics derivatives during optimization creates a com-
putational bottleneck, particularly in second-order methods.
In this paper, we present a modification of the classical
Differential Dynamic Programming (DDP) algorithm that elim-
inates the computation of dynamics derivatives while main-
taining similar convergence properties. Rather than relying on
naive finite difference calculations, we propose a deterministic
sampling scheme inspired by the Unscented Kalman Filter
that propagates a quadratic approximation of the cost-to-go
function through the nonlinear dynamics at each time step.
Our algorithm takes larger steps than Iterative LQR—a DDP
variant that approximates the cost-to-go Hessian using only first
derivatives—while maintaining the same computational cost.
We present results demonstrating its numerical performance
in simulated balancing and aerobatic flight experiments.

I. INTRODUCTION

Trajectory optimization algorithms are a powerful class
of methods for generating goal-directed behavior in dy-
namical systems by computing admissible state and control
sequences that minimize a cost functional subject to a set
of constraints [1]. In many applications—such as robotics—
computation time is a critical factor driving algorithm se-
lection. Differential Dynamic Programming (DDP) [2] is a
second-order method with favorable quadratic convergence
properties for smooth discrete-time systems [3], [4]. The
algorithm proceeds iteratively by simulating the dynamics
forward and computing updates to the control inputs back-
wards in time using local quadratic models of the cost-to-go
(see Section II-A). Importantly, DDP must compute second-
order derivatives of the dynamics in the backwards phase,
which are almost always the most expensive part of the
computation. A closely related algorithm, called Iterative
LQR (iLQR) [5], uses only the first-order derivatives of
the dynamics to reduce computation time at the expense
of slower convergence. The relationship between DDP and
iLQR is similar to the relationship between Newton’s method
and the Gauss-Newton method in that the Hessian is approx-
imated using only the Jacobian [6].

In this paper, we present a new variant of DDP that
maintains the efficient computational properties of iLQR
while achieving superior convergence rates. Our algorithm,
called Unscented Dynamic Programming (UDP), avoids ana-
lytical computation of dynamics derivatives using a sampling
scheme inspired by the Unscented Kalman Filter (UKF). The

John A. Paulson School of Engineering and Applied
Sciences, Harvard University, Cambridge, MA, USA.
{zmanchester,scottk}@seas.harvard.edu

Unscented Transform has been used previously to propagate
probability distributions in stochastic trajectory optimization
algorithms such as Iterative Local Dynamic Programming
(iLDP) [7]. Our approach is fundamentally different in
dealing with the deterministic case and using the Unscented
Transform to propagate the cost-to-go function, rather than
a probability distribution.

DDP and its variants fall into the general family of
shooting methods that are built on the theoretical foundation
of Pontryagin’s Minimum Principle [8]. By parameterizing
only the controls and simulating the dynamics forward to
evaluate the cost, they create compact optimization problems
for which local minima can often be identified quickly.
Among the limitations of these techniques are sensitivity
to input trajectory initializations and numerical conditioning
issues sometimes referred to as the “tail wagging the dog”
phenomenon [1]. An alternative class of algorithms, called
direct methods, parameterize both the state and control
trajectories and solve large (often sparse) nonlinear programs
using off-the-shelf sequential quadratic programming pack-
ages [1], [9]. These formulations are particularly useful for
problems with many state and input constraints. Both classes
of algorithms have demonstrated value in challenging opti-
mization problems, including high-dimensional robot motion
planning [10], [11], [12], [13].

Efficient implementations of iLQR have been used for
Model-Predictive Control (MPC) of humanoid robots in
simulation [14], [15] and hardware [11]. In the MPC setting,
the algorithm is often terminated before convergence due to
real-time requirements. We show that our approach generally
takes larger steps than iLQR, making it particularly attrac-
tive for these applications. Recent work has explored LQR
smoothing (inspired by Kalman smoothing) as an alternative
to iLQR [16]. We anticipate that an analogous application
of UKF ideas could be made for this class of algorithms,
although we do not pursue such development in this paper.

In the remainder of the paper, we review basic concepts
from the DDP algorithm and the Unscented Transform
(Section II), introduce the UDP algorithm (Section III), and
describe experimental results comparing UDP against the
classic DDP and iLQR algorithms (Section IV).

II. BACKGROUND

For completeness and to establish notation, we derive the
classic DDP algorithm and the Unscented Transform in the
following subsections.

A. Differential Dynamic Programming

The DDP algorithm assumes a discrete-time nonlinear
dynamical system of the form

xk+1 = f(xk, uk), (1)

where x ∈ Rn is the system state, u ∈ Rm is a control input,
and an additive cost function,

J(X,U) = `f (xN) +

N−1∑
k=1

`(xk, uk), (2)

where X = {x1, . . . , xN} and U = {u1, . . . , uN−1} are the
state and input trajectories, respectively. In the development
below, we further assume that `f (xN) and `(xk, uk) are
quadratic and that the gradients and Hessians are therefore
trivially defined. Second-order Taylor expansions of non-
quadratic cost functions could also be substituted. Specifi-
cally, let

J =
1

2
xTNWNxN + wTNxN

+

N−1∑
k=1

1

2
xTkWkxk + wTk xk +

1

2
uTkRkuk + rTk uk, (3)

where W ∈ Sn+ and R ∈ Sm++ are, respectively, positive-
semidefinite and positive-definite cost weighting matrices,
and w ∈ Rn and r ∈ Rm are cost weighting vectors.

The optimal cost-to-go, V ∗k (x), gives the total cost that
will be accumulated between time steps k and N , starting
in state x, if the optimal control policy is followed. Using
Bellman’s principle of optimality [17], this function can be
written as a simple recurrence relation,

V ∗N (x) =
1

2
xTWNx+ wTNx

V ∗k (x) = min
u

Q∗k(x, u)

≡ min
u

(
1

2
xTWkx+ wTk x

+
1

2
uTRku+ rTk u+ V ∗k+1(f(x, u))

)
.

(4)

When interpreted as an update procedure, this relationship
leads to classical dynamic programming algorithms. How-
ever, while V ∗N (x) is quadratic, V ∗k (x) will not be in general
due to the nonlinearity of the dynamics. Cost-to-go functions
often have complex geometry that is difficult to represent
and expensive to compute. DDP overcomes this difficulty by
starting with an initial guess trajectory and approximating the
cost-to-go function as locally quadratic near that trajectory,

Vk(x+ δx) ≈ Vk(x) +
1

2
δxTHkδx+ gTk δx, (5)

where Hk and gk are the Hessian and gradient of Vk
evaluated at x, respectively.

The algorithm proceeds by calculating the following ap-
proximate cost-to-go at each time step,

Qk(x+ δx, u+ δu) ≈ Qk(x, u)

+
1

2

[
δx
δu

]T [
Ak CTk
Ck Bk

] [
δx
δu

]
+

[
ak
bk

]T [
δx
δu

]
, (6)

where Ak = ∂2Qk/∂x
2, Bk = ∂2Qk/∂u

2, Ck =
∂2Qk/∂u∂x are block matrices of the Hessian of Qk and
ak = ∂Qk/∂x, bk = ∂Qk/∂u are the gradient vectors. The
block matrices in the Hessian and gradient are computed as

ax =Wkx+ wk +

(
∂f

∂x

)T
gk+1 (7)

bk = Rku+ rk +

(
∂f

∂u

)T
gk+1 (8)

Ak =Wk +

(
∂f

∂x

)T
Hk+1

(
∂f

∂x

)
+

(
∂2f

∂x2

)
· gk+1 (9)

Bk = Rk +

(
∂f

∂u

)T
Hk+1

(
∂f

∂u

)
+

(
∂2f

∂u2

)
· gk+1 (10)

Ck =

(
∂f

∂u

)T
Hk+1

(
∂f

∂x

)
+

(
∂2f

∂u∂x

)
· gk+1. (11)

Note that the second derivatives of the dynamics appearing in
equations (9), (10), and (11) are rank-three tensors, and that
their multiplication with the vector gk+1 produces matrices.
These tensor calculations are relatively expensive and are
often omitted, resulting in the iLQR algorithm [5].

Minimizing equation (6) with respect to δu results in the
following correction to the control trajectory,

δuk = −B−1k (Ckδx+ bk) = −Kkδx− lk, (12)

which consists of a constant term, lk, and a linear feedback
term, Kkδx. These terms can be substituted back into
equation (6) to obtain Hk and gk in equation (5):

Hk =Wk +KT
k BkKk −KT

k Ck − CTk Kk (13)

gk = wk +Wkx+ ak + (KT
k Bk − CTk)lk −KT

k bk. (14)

Additionally, the expected change in the cost-to-go at time
k can be computed:

δVk = −lTkBklk − bTk lk. (15)

From here, the recursion can be continued backward until
k = 1. At that point, a forward pass is performed with the
new corrected feedback control uk(x) to compute a new state
trajectory xk. These alternating backward and forward passes
are then repeated until convergence to a locally optimal
trajectory is achieved, as summarized in Algorithm 1.

DDP is a second-order algorithm that, like Newton’s
method, can achieve quadratic convergence rates [3], [4].
Also like Newton’s method, some additional care must be
taken in practice to ensure good convergence properties.
First, a regularization term must sometimes be added to Bk
in equation (12) to ensure positive-definiteness. Second, a

Algorithm 1 Differential Dynamic Programming
1: procedure DDP(x, u, ε)
2: repeat
3: K, l, δV ← backward pass using (7) – (15)
4: x, u, δJ ← FORWARDPASS(x, u,K, l, δV)
5: until |δJ | < ε
6: return x, u
7: end procedure
8: function FORWARDPASS(x, u,K, l, δV)
9: α = 1

10: repeat
11: for k = 1 . . . N do
12: xk+1 ← f(xk, uk − αlk −Kkδxk)
13: end for
14: J ← calculate using (3)
15: α← reduce according to line search update
16: until Wolfe conditions are satisfied [6]
17: return x, u, δJ
18: end function

line search must be performed during the forward pass of the
algorithm to ensure a sufficient decrease in cost is achieved.
An approximate line search using the Wolfe conditions as the
termination criteria is often used [6]. These implementation
details are discussed in depth in [18].

B. Unscented Transform
The Unscented Transform [19] is a method used to approx-

imate the mean and covariance of a probability distribution
that has been mapped through a nonlinear coordinate trans-
formation. It was originally developed for use in recursive
estimation algorithms, most notably the UKF [20]. The basic
idea is to sample the distribution at a small number of
strategically chosen points, known as sigma points, Si, which
are then propagated through the coordinate transformation
and used to calculate a new mean and covariance.

The Unscented Transform is typically motivated by con-
sidering a probability distribution with mean, µ ∈ Rn, and
covariance, P ∈ Sn++, that is mapped through a nonlinear
coordinate transformation, x′ = f(x). Consider the follow-
ing first-order approximation of the mean and covariance of
the transformed distribution that is used in many applications
(e.g., the Extended Kalman Filter):

µ′ = f(µ) (16)

P ′ =

(
∂f

∂x

)
P

(
∂f

∂x

)T
. (17)

If the Cholesky factorization P = LLT , where L is the
unique lower triangular “square root” of P , is substituted
into equation (17),

L′L′T =

(
∂f

∂x

)
LLT

(
∂f

∂x

)T
, (18)

a transformation equation for L can be written:

L′ =

(
∂f

∂x

)
L. (19)

Equation (19) can be interpreted as propagating the col-
umn vectors of L through the linearized mapping ∂f

∂x . It is
then natural to consider simply propagating the columns of
L directly through the full nonlinear transformation f(x)
without linearizing. This basic intuition leads directly to
Algorithm 2, where subscripts i indicate columns of a matrix
and β is a scale factor chosen by the user.

Algorithm 2 Unscented Transform
1: procedure UT(µ, P, f)
2: L = chol(P)
3: for i← 1 . . . n do
4: Si = f(µ+ βLi)
5: Sn+i = f(µ− βLi)
6: end for
7: µ′ ← 0
8: P ′ ← 0
9: for i← 1 . . . 2n do

10: µ′ ← µ′ + 1
2nSi

11: end for
12: for i← 1 . . . 2n do
13: P ′ ← P ′ + 1

2β2 (Si − µ′)(Si − µ′)T
14: end for
15: return µ′, P ′

16: end procedure

There are many variations of the Unscented Transform
with a variety of weighting and sampling schemes. The
simple version presented in this section has been shown to
produce mean and covariance estimates that capture first and
second order effects of the coordinate transformation [20].

III. UNSCENTED DYNAMIC PROGRAMMING

The main idea underlying the proposed UDP algorithm is
to replace the gradient and Hessian calculations in equations
(7)–(11) with approximations computed from a set of sample
points. The choice of samples is motivated by analyzing the
transformation of the Hessian in equation (9),

H− =

(
∂f

∂x

)T
Hk+1

(
∂f

∂x

)
, (20)

where we use a superscript “−” to denote backward propaga-
tion through the dynamics. Taking the inverse of both sides
gives:

(H−)−1 =

(
∂f

∂x

)−1
H−1k+1

(
∂f

∂x

)−T
. (21)

If the Cholesky factorization H−1k+1 = LLT is now substi-
tuted into (21), we arrive at the following transformation
equation for L,

L− =

(
∂f

∂x

)−1
L, (22)

where the columns of L are propagated through the dynamics
backward in time from tk+1 to tk. As in Section II-B, we are
now in a position to eliminate the linearization and propagate

the columns of L directly through the backwards system
dynamics:

xk = f−(xk+1, uk). (23)

This backwards dynamics function can always be defined
for a continuous-time dynamical system by simply integrat-
ing backwards in time using, for example, a Runge-Kutta
method.

To compute the full Hessian matrix in equation (6), a set
of 2(n+m) sample points is generated using the following
Cholesky factorization:

L = chol

([
Hk+1 0
0 Rk

]−1)
. (24)

As in Algorithm 2, the sample points are constructed from
the columns of L = [L1, . . . , Ln+m],[

xsi
usi

]
=

[
xk+1

uk

]
+ βLi (25)[

xsi+n+m
usi+n+m

]
=

[
xk+1

uk

]
− βLi, (26)

where each column and its negative is scaled and added to
the vector

[
xTk+1 uTk

]T
. The samples are then propagated

backward through the dynamics:

xs−i = f−(xsi , u
s
i). (27)

Using the back-propagated sample points, the Hessian in
equation (6) becomes[

Ak CTk
Ck Bk

]
=M−1 +

[
Wk 0
0 0

]
, (28)

where

M =
1

2β2

2(n+m)∑
i=1

([
xs−i
usi

]
−
[
xk
uk

])([
xs−i
usi

]
−
[
xk
uk

])T
(29)

and the one-step cost, Wk, has been added to the Ak block.
The last ingredient needed to complete the DDP recursion

of Section II-A is the gradient vector. This can be computed
without any additional evaluations of the dynamics function
by projecting gk+1 onto the sample points used to calculate
the Hessian:

gsi = gTk+1x
s
i . (30)

An (n+m)× (n+m) linear system is then solved,

D

[
a−

b−

]
= d, (31)

where the columns of D are differences of pairs of sample
vectors,

D =

[
xs−1 − x

s−
n+m+1 · · · xs−n+m − xs−2(n+m)

us1 − usn+m+1 · · · usn+m − us2(n+m)

]
, (32)

and the entries of d are differences of pairs of elements from
gs:

d =

 gs1 − gsn+m+1
...

gsn+m − gs2(n+m)

 . (33)

This procedure is equivalent to calculating a centered finite-
difference approximation of the terms

a− =

(
∂f

∂x

)T
gk+1 (34)

and

b− =

(
∂f

∂u

)T
gk+1 (35)

in equations (7) and (8). Finally, the one-step costs for step
k are added:

ak = a− +Wkx+ wk (36)

bk = b− +Rku+ rk. (37)

The sample-based Hessian and gradient calculations de-
tailed in this section can be readily inserted into equations
(12)–(15), creating a derivative-free variant of the DDP
algorithm. The number of sample points and dynamics
function evaluations per iteration are the same as would be
required to calculate centered-difference first derivatives of
the dynamics for use in the standard iLQR algorithm. As
has been demonstrated in applications of the UKF, however,
the Unscented Transform often produces better results than
naive finite difference approaches.

IV. EXAMPLES

Three numerical examples are now presented to demon-
strate the performance of the UDP algorithm. The new algo-
rithm is compared to the standard DDP and iLQR algorithms
with finite-difference derivatives. All implementation details
(line search, regularization, etc.) are identical except for the
substitution of the Unscented Transform procedure in lieu of
equations (7)–(11) in the UDP implementation.

A. Pendulum

In the first test case, a simple pendulum with an input
torque is considered. The goal is to swing the pendulum
from its downward stable equilibrium at θ = 0 to the upward
unstable equilibrium at θ = π.

The following cost function is used,

J =
1

2
(xN − xg)TWN (xN − xg)

+

N−1∑
k=1

1

2
(xk − xg)TW (xk − xg) +

1

2
uTkRuk (38)

where

xg =

[
θg
θ̇g

]
=

[
π
0

]
(39)

WN =

[
30 0
0 30

]
(40)

W =

[
0.3 0
0 0.3

]
(41)

and R = 0.3. The classic fourth-order Runge-Kutta method
is used to discretize the dynamics with a step size of 0.1
and the horizon is set to N = 50 steps. The algorithms are
initialized with all states and control inputs set to zero.

TABLE I
PENDULUM SWING-UP PERFORMANCE

Algorithm Cost Iterations Time (s)
UDP 38.73 57 15.2
DDP 38.64 34 16.6
iLQR 38.65 79 19.5

UDP, DDP, and iLQR converge to essentially the same
trajectory. There are, however, marked differences in their
convergence behavior, as can be seen in Table I and Figure
1. The DDP algorithm takes the largest steps and converges
with the fewest number of iterations. However, the computa-
tional cost of each iteration is much higher than the other two
algorithms. The UDP algorithm approaches the convergence
rate of DDP while requiring approximately the same amount
of computation per iteration as iLQR.

0 20 40 60 80

50

100

Iteration

To
ta

l
C

os
t

UDP
DDP
iLQR

Fig. 1. Pendulum swing-up cost

B. Cart Pole

The second example deals with the cart pole system shown
in Figure 2. The system has two degrees of freedom—
translation of the cart and rotation of the pendulum—but
only one control input consisting of a force applied to the
cart. The goal is to swing the pendulum from its downward

Fig. 2. Cart pole

equilibrium to its upward equilibrium.
A cost function of the same form as equation (38) is used,

this time with the goal state xg =
[
0 π 0 0

]T
and the

weighting matrices WN = 103 I4×4, W = 0.1 I4×4, and
R = 0.01, where I4×4 is the 4×4 identity matrix. As before,

TABLE II
CART POLE SWING-UP PERFORMANCE

Algorithm Cost Iterations Time (s)
UDP 131.78 183 78.4
DDP 131.76 67 173.1
iLQR 135.40 54 26.6

the algorithms are initialized with zeros and they are run with
a step size of 0.1 and a horizon of N = 50.

Unlike in the pendulum example, the UDP and DDP
algorithms converge to a slightly different trajectory than
iLQR. The cost reduction at each iteration for UDP and iLQR
is plotted in Figure 3 (DDP is omitted for visual clarity).
The two algorithms take similar steps when they begin, with
iLQR achieving a cost of 131.40 by iteration 54 compared
to 131.25 for UDP. However, iLQR stops making significant
progress at that point. UDP, on the other hand, continues
converging until it closely matches the cost achieved by the
full DDP algorithm.

0 20 40 60 80 100
10−7

10−4

10−1

102

Iteration

C
os

t
R

ed
uc

tio
n

UDP
iLQR

Fig. 3. Cart pole swing-up cost reduction

C. Airplane

The final example deals with the small airplane shown in
Figure 4. A dynamics model for this airplane was constructed

Fig. 4. E-flite AS3Xtra model aircraft

based on a combination of flat plate aerodynamic theory
and parameter fitting from motion capture experiments. The
12-dimensional state vector consists of the aircraft position,

attitude, velocity, and angular velocity. Attitude is repre-
sented using modified Rodrigues parameters which, unlike
Euler angles, allow rotations of up to 360◦ before becoming
singular [21]. The system has four control inputs consisting
of the throttle setting and aileron, elevator, and rudder angles.
Control responses are fast enough that actuator dynamics can
be ignored.

The goal in this example is for the airplane to perform
a 180◦ barrel roll within a 6 meter physical distance while
minimizing control effort. A cost function of the same form
as equation (38) is again used, this time with a running
cost on the control effort and only a terminal cost on the
state (W = 0). The goal state is inverted level flight. The
algorithms are initialized with a trajectory consisting of a
straight-and-level flight ending at the desired final position,
but in an upright attitude.

UDP, DDP, and iLQR converge to essentially identical fi-
nal trajectories, depicted in Figure 5. Of the three algorithms,
UDP converges fastest in terms of both iteration count and
computation time, as shown in Table III.

Fig. 5. Barrel roll trajectory

V. DISCUSSION

We have presented a derivative-free variant of the DDP
algorithm that uses the Unscented Transform to propagate
quadratic cost-to-go estimates backwards along the trajec-
tory. The new UDP algorithm has the same per-iteration
computational requirements as iLQR, but due to the ability of
the Unscented Transform to capture second-order dynamical
information, it offers performance closer to that of the full
DDP algorithm. A MATLAB implementation of the algorithm
is available at http://bit.ly/unscented-dp.

Several directions for future research remain. First, a
thorough investigation of the effect of the parameter β used
to scale the sigma points is needed. Ultimately, a scheme for
choosing β based on the system dynamics and cost function
would greatly enhance the utility of the algorithm. Second,
while the UDP algorithm presented here does not require
derivatives of the dynamics, it does require derivatives of
the cost function. Extending the sampling scheme to handle
non-quadratic cost functions could avoid further derivative
calculations. Lastly, the algorithms discussed in this paper
do not account for input constraints. By solving quadratic
programming problems at each time step, rather than com-
puting the unconstrained LQR policy, these constraints can
be handled efficiently [22], [23].

TABLE III
AIRPLANE BARREL ROLL PERFORMANCE

Algorithm Cost Iterations Time (s)
UDP 37.80 30 11.6
DDP 37.80 31 100.2
iLQR 37.81 36 12.1

REFERENCES

[1] J. T. Betts, Practical methods for optimal control using nonlinear
programming, vol. 3 of Advances in Design and Control. Philadelphia,
PA: Society for Industrial and Applied Mathematics (SIAM), 2001.

[2] D. Q. Mayne, “A second-order gradient method of optimizing non-
linear discrete time systems,” Int J Control, vol. 3, p. 8595, 1966.

[3] D. H. Jacobson and D. Q. Mayne, Differential Dynamic Programming.
Elsevier, 1970.

[4] L.-z. Liao and C. A. Shoemaker, “Advantages of Differential Dynamic
Programming Over Newton’s Method for Discrete-time Optimal Con-
trol Problems,” technical report, Cornell University, July 1992.

[5] W. Li and E. Todorov, “Iterative Linear Quadratic Regulator Design
for Nonlinear Biological Movement Systems,” in Proceedings of the
1st International Conference on Informatics in Control, Automation
and Robotics, (Setubal, Portugal), 2004.

[6] J. Nocedal and S. J. Wright, Numerical Optimization. Springer,
2nd ed., 2006.

[7] E. Todorov and Y. Tassa, “Iterative Local Dynamic Programming,” in
Adaptive Dynamic Programming and Reinforcement Learning, 2009.

[8] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mis-
chenko, The Mathematical Theory of Optimal Processes. Interscience,
1962.

[9] C. R. Hargraves and S. W. Paris, “Direct Trajectory Optimization
Using Nonlinear Programming and Collocation,” J. Guidance, vol. 10,
no. 4, pp. 338–342, 1987.

[10] K. D. Mombaur, “Using optimization to create self-stable human-like
running,” Robotica, vol. 27, no. 3, pp. 321–330, 2009.

[11] J. Koenemann, A. Del Prete, Y. Tassa, E. Todorov, O. Stasse, M. Ben-
newitz, and N. Mansard, “Whole-body Model-Predictive Control
applied to the HRP-2 Humanoid,” in Proceedings of the IEEERAS
Conference on Intelligent Robots, 2015.

[12] M. Posa, C. Cantu, and R. Tedrake, “A direct method for trajectory
optimization of rigid bodies through contact,” International Journal of
Robotics Research, vol. 33, pp. 69–81, Jan. 2014.

[13] M. Posa, S. Kuindersma, and R. Tedrake, “Optimization and stabiliza-
tion of trajectories for constrained dynamical systems,” in Proceedings
of the International Conference on Robotics and Automation (ICRA),
(Stockholm, Sweden), IEEE, 2016.

[14] T. Erez, Y. Tassa, and E. Todorov, “Infinite-Horizon Model Predictive
Control for Periodic Tasks with Contacts,” in Robotics Science and
Systems VII, pp. 73–80, 2012.

[15] Y. Tassa, T. Erez, and E. Todorov, “Synthesis and Stabilization
of Complex Behaviors through Online Trajectory Optimization,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2012.

[16] J. van den Berg, “Iterated LQR smoothing for locally-optimal feedback
control of systems with non-linear dynamics and non-quadratic cost,”
in American Control Conference (ACC), 2014, pp. 1912–1918, 2014.

[17] R. Bellman, Dynamic Programming. Dover, 1957.
[18] Y. Tassa, Theory and Implementation of Biomimetic Motor Controllers.

PhD thesis, Feb. 2011.
[19] J. Uhlmann, Dynamic Map Building and Localization: New Theoreti-

cal Foundations. PhD thesis, University of Oxford, 1995.
[20] E. A. Wan and R. V. D. Merwe, “The unscented Kalman filter for

nonlinear estimation,” in Adaptive Systems for Signal Processing,
Communications, and Control Symposium 2000. AS-SPCC. The IEEE
2000, pp. 153–158, 2000.

[21] H. Schaub and J. L. Junkins, Analytical Mechanics of Space Systems.
Reston, VA: AIAA, 2nd ed., Oct 2009.

[22] Y. Tassa, T. Erez, and E. Todorov, “Control-Limited Differential Dy-
namic Programming,” in Proceedings of the International Conference
on Robotics and Automation (ICRA), May 2014.

[23] S. Kuindersma, F. Permenter, and R. Tedrake, “An Efficiently Solvable
Quadratic Program for Stabilizing Dynamic Locomotion,” in Proceed-
ings of the International Conference on Robotics and Automation
(ICRA), (Hong Kong, China), pp. 2589–2594, IEEE, May 2014.

http://bit.ly/unscented-dp

	Introduction
	Background
	Differential Dynamic Programming
	Unscented Transform

	Unscented Dynamic Programming
	Examples
	Pendulum
	Cart Pole
	Airplane

	Discussion
	References

