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Planning with Attitude

Brian E Jackson!, Kevin Tracy!, and Zachary Manchester!

Abstract—Planning trajectories for floating-base robotic sys-
tems that experience large attitude changes is challenging due
to the nontrivial group structure of 3D rotations. This paper
introduces a powerful and accessible approach for optimization-
based planning on the space of rotations using only standard
linear algebra and vector calculus. We demonstrate the ef-
fectiveness of the approach by adapting Newton’s method to
solve the canonical Wahba’s problem, and modify the trajectory
optimization solver ALTRO to plan directly on the space of
unit quaternions, achieving superior convergence on problems
involving significant changes in attitude.

Index Terms—Motion and Path Planning, Optimization and
Optimal Control, Computational Geometry, Underactuated
Robots, Motion Control,

I. INTRODUCTION

ANY robotic systems—including quadrotors, air-

planes, satellites, autonomous underwater vehicles,
and quadrupeds—can perform arbitrarily large three-
dimensional translations and rotations as part of their nor-
mal operation. While representing translations is straight-
forward and intuitive, effectively representing the non-
trivial group structure of 3D rotations has been a topic
of study for many decades. Although we can intuitively
deduce that rotations are three-dimensional, a globally
non-singular three-parameter representation of the space
of rotations does not exist [Il]. As a result, when parameter-
izing rotations, we must either a) choose a three-parameter
representation and deal with singularities and disconti-
nuities, or b) choose a higher-dimensional representation
and deal with constraints between the parameters. While
simply representing attitude is nontrivial, generating and
tracking motion plans for floating-base systems is an even
more challenging problem.

Early work on control problems involving the rotation
group dates back to the 1970s, with extensions of linear
control theory to spheres [2] and SO(3) [B]. Effective
attitude tracking controllers have been developed for satel-
lites [4], quadrotors [5]-[L0], and a 3D inverted pendulum
[11] using various methods for calculating three-parameter
attitude errors.

More recently, these ideas have been extended to trajec-
tory generation [[12], sample-based motion planning [[13],
[14], and optimal control. Approaches to optimal control
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with attitude states include analytical methods applied to
satellites [L5], discrete mechanics [16]-[18], a combination
of sampling-based planning and constrained trajectory
optimization for satellite formations [[19], [20], projection
operators [21], or more general theory for optimization on
manifolds [22]. Nearly all of these methods rely heavily on
principles from differential geometry and Lie group theory;
however, despite these works, many recent papers in the
robotics community continue to naively apply standard
methods for motion planning and control with no regard
for the group structure of rigid body motion.

In this paper, we make a departure from previous
approaches to geometric planning and control that rely
heavily on ideas and notation from differential geometry,
and instead use only basic mathematical tools from linear
algebra and vector calculus that should be familiar to
most roboticists. In Sec. E we introduce an approach to
quaternion differential calculus similar to [23], [24], but
significantly simpler and more general, enabling straight-
forward adaptation of existing algorithms to systems with
quaternion states. For concreteness, we then apply our
method to the canonical Wahba’s problem [25] in Sec.

, and demonstrate superior convergence to approaches
that fail to properly account for the group structure. In
Sec. |V| we extend these ideas to the problem of trajectory
optimization, and detail modifications to ALTRO, a state-
of-the-art constrained trajectory optimization solver, and
demonstrate performance gains on several benchmark
problems. With the modifications presented in this paper,
ALTRO explicitly leverages both the structure of the
trajectory optimization problem as well as the group
structure of 3D rotations, making it uniquely well-suited
to solving challenging problems with near real-time per-
formance.

In summary, our contributions include:

o A unified approach to quaternion differential calculus
entirely based on standard linear algebra and vector
calculus.

o Derivation of a Newton-based algorithm for nonlinear
optimization directly on the space of unit quaternions.

o Implementation of a fast and efficient solver for tra-
jectory optimization problems with attitude dynamics
and nonlinear constraints that correctly accounts for
the group structure of 3D rotations.

II. Background

We begin by defining some useful conventions and
notation. Attitude is defined as the rotation from the
robot’s body frame to the world frame. We also define
gradients to be row vectors, that is, for f(z) : R — R,
9 e RIxm,
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A. Unit Quaternions

We leverage the fact that quaternions are linear opera-
tors and that the space of quaternions H is isomorphic
to R* to explicitly represent—following the Hamilton
convention—a quaternion q € H as a standard vector
g € R* .= [gs ¢!']" where ¢ € R and ¢, € R?
are referred to as the scalar and vector parts of the
quaternion, respectively. The space of unit quaternions,
S* = {q : |lqll; = 1}, is a double-cover of the rotation
ﬁup SO(3), since ¢ and —q represent the same rotation
2d].

Quaternion multiplication is defined as

da ® qy = L(g2)q1 = R(q1)q2 (1)

where L(q) and R(q) are orthonormal matrices defined as

A

T
qs —q
R(q) :== v , 3
@=2 ®)
and [z]* is the skew-symmetric matrix operator
0 —X3 T2
[.T]X = T3 0 —x1| - (4)
—X2 T 0

The inverse of a unit quaternion !, giving the opposite
rotation, is equal to its conjugate q*, which is simply the
same quaternion with a negated vector part:

q*=Tq:=F &]q (5)

The following identities, which are easily derived from (E),
(H), are extremely useful:

L(Tq) = L(g)" = L(g)~" (6)
R(Tq) = R(g)" = R(q)™". (7)
We will sometimes find it helpful to create a quaternion

with zero scalar part from a vector » € R3. We denote
this operation as,

szrE[O}r. (8)

Unit quaternions rotate a vector through the operation
7 = q® 7 ® q*. This can be equivalently expressed using
matrix multiplication as

r' = H'L(q)R(q)" Hr = A(q)r, (9)

where A(q) is the rotation matrix in terms of the elements
of the quaternion [27].

B. Rigid Body Dynamics
For clarity, we will restrict our attention to rigid bodies

moving freely in 3D space. That is, we consider systems
with dynamics of the following form:

r v
1 A1
_|a .| 3a®@=35L(g)Hw
T= e * LWE(z,u) (10)
w J Y (Br(z,u) —w x Jw)

Fig. 1.  When linearizing about a point q on an sphere S®~1 in
n-dimensional space, the tangent space T is a plane living in R?~1,
illustrated here with n = 3. Therefore, when linearizing about a unit
quaternion q € S3, the space of differential rotations lives in R3.

where z and u are the state and control vectors, r € R3
is the position, q € S? is the attitude, v € R? is the linear
velocity, and w € R3 is the angular velocity. m € R is
the mass, J € R3*3 is the inertia matrix, WF(z,u) € R3
are the forces in the world frame, and Br(x,u) are the
moments in the body frame.

III. Quaternion Differential Calculus

We now present a simple but powerful method for taking
derivatives of functions involving quaternions based on the
ﬁtetion and linear algebraic operations outlined in Sec.
[1-Al.

Derivatives consider the effect an infinitesimal pertur-
bation to the input has on an infinitesimal perturbation
to the output. For vector spaces, the composition of the
perturbation with the nominal value is simple addition and
the infinitesimal perturbation lives in the same space as
the original vector. For unit quaternions, however, neither
of these are true; instead, they compose according to
(IIf), and infinitesimal unit quaternions are (to first order)
confined to a 3-dimensional plane tangent to S (see Fig.

).
ﬂ The fact that differential unit quaternions are three-
dimensional should make intuitive sense: Rotations are
inherently three-dimensional and differential rotations
should live in the same space as angular velocities, i.e.
R3.

There are many possible three-parameter representa-
tions for small rotations in the literature. Many authors
use the exponential map (3], [12], 18], [21], [22], 2], 24,
while others have used the Cayley map (also known as
Rodrigues parameters) [@}, [@], Modified Rodrigues Pa-
rameters (MRPs) [B0], or the vector part of the quaternion
[b]. We choose Rodrigues parameters [26] because they
are computationally efficient and do not inherit the sign
ambiguity associated with unit quaternions. The mapping
between a vector of Rodrigues parameters ¢ € R3 and a
unit quaternion ¢ is known as the Cayley map:

q=¢(¢) = (11)

—— 4
1+ g2 ¢
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We will also make use of the inverse Cayley map:

b=p () =L

ds (12)

A. Jacobian of Vector-Valued Functions

When taking derivatives with respect to quaternions, we
must take into account both the composition rule and the
nonlinear mapping between the space of unit quaternions
and our chosen three-parameter error representation.

Let ¢ € R3 be a differential rotation applied to a
function with quaternion inputs y = h(q) : S* — RP,
such that

y+ 0y = h(L(q)p(9)) = h(q) + Vh(q)¢.

Note that we chose to represent ¢ in the body frame,
consistent with the standard definition of angular velocity,
and therefore it is applied to ¢ through right (rather
than left) multiplication. We can calculate the Jacobian
Vh(q) € RP*3 by differentiating ([l3) with respect to ¢,
evaluated at ¢ = 0:
__0Oh __0Oh __0Oh —qr

Vhia) = Gl = 56 = 5o | )
where G(q) € R**3 is the attitude Jacobian, which
essentially becomes a “conversion factor” allowing us to
apply results from standard vector calculus to the space
of unit quaternions. This form is particularly useful in
practice since Oh/dq € RP** can be obtained using
finite differences or automatic differentiation. As an aside,
although we have used Rodrigues parameters, G(q) is
actually the same (up to a constant scalar factor) for any
choice of three-parameter attitude representation.

(13)

B. Hessian of Scalar-Valued Functions

If the output of h is a scalar (p = 1), then we can find
its Hessian by taking the Jacobian of ([l4) with respect to
¢ using the product rule, again evaluated at ¢ = O:

0%h oh
T

—2Glq) — I3—q,
aqg (q) 3 6(] q
where the second term comes from the second derivative
of p(¢). Similar to G(gq), this expression is the same (up to
a constant scalar factor) for any choice of three-parameter
attitude representation.

V?h(q) = G(q) (15)

C. Jacobian of Quaternion-Valued Functions

We now consider the case of a function that maps unit
quaternions to unit quaternions, ¢’ = f(q) : S* — S®. Here
we must also consider the non-trivial effect of a differential
rotation applied to the output, i.e.:

L(d)e(¢") = f(L(Q)p(d)). (16)
Solving (@) for ¢’ we find,
¢' =0 (L) F(L(@)e(9) = VI(a) ¢. (17)

Finally, the desired Jacobian is obtained by taking the
derivative of ([L1) with respect to ¢:

af 0

Via) = HTL@) S L) = Ol 6. (1)
dq dq

Once again, (@) holds (up to a constant) for any three-
parameter attitude representation.

IV. Modifying Newton’s Method

Newton’s method uses derivative information about a
function to iteratively approximate its roots. For uncon-
strained systems, this method is highly effective, and
can exhibit quadratic convergence rates. For constrained
systems, the updates can be projected back onto the
feasible set at each iteration, but without the same
convergence guarantees.

In this section, we will leverage the quaternion calculus
results introduced in the previous section to modify
Newton’s method so that it implicitly accounts for the
quaternion unit-norm constraint. Unlike the projection ap-
proach, this modified form of Newton’s method retains the
fast convergence rates associated with the unconstrained
method. We will demonstrate this behavior on Wahba'’s
Problem, a least-squares attitude estimation problem [25],
[26].

A. Methodology
W,

Given a set of known vectors in the world frame, "w;,
and measurements of these vectors in the body frame, Bv;,
we seek the rotation from the body to the world frame
WA(q)P that solves the following optimization problem,

W(q)

subject to ¢ € S?,

minimize
q

where Wahba’s loss function W (gq) is,

2
W(g) =Y [["wi = Alg) Puil, = lIr(a)ll3, (19)
and r(q) is the residual vector.
The Jacobian of 7(g) can be found using (@)
or
vrle) = 5,6 (20)
= —2H"R(q)" (Z R(Bfa—)> G(g).  (21)

Given a guess solution, g, The standard Gauss-Newton
method can then be used to compute a three-parameter
update, ¢y via the Moore-Penrose psuedoinverse:

bor = —(VriVr) el e (qp). (22)

The update is then applied using the composition for the

group:

Apy1 = Ak @ (D) (23)

This “multiplicative” Gauss-Newton method is summa-
rized in Algorithm m
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Algorithm 1 Multiplicative Gauss-Newton Method
1: k=0
2: while ||¢|| > tolerance do

3: Vr = %‘;’“)G(qk) > Compute Jacobian
4 ¢p=—(Vr'vr)'VrTr(gy) > Compute update
step
5: qr+1 = L(gr) () > Apply update step
6: k=k+1
7: end while
T T T T T
. 101 [ |
w0
)
(]
—
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Fig. 2. Convergence comparison for Wahba’s problem. The error

is the angle between the current solution and the globally optimal
solution computed using a singular-value decomposition. The thick
line is the average result of 100 trials with randomized orientations
and measurements. The thin lines are the maximum and minimum
over all 100 trials. By modfying Newton’s method with the methods
of section [I], quadratic convergence rates are achieved, while a naive
approach stalls after only a few iterations.

B. Results

Figure E compares the multiplicative Gauss-Newton
method with a naive Newton’s method in which the
quaternion is simply projected back onto the unit sphere
at every iteration. The naive method makes progress
initially, but quickly stalls. By correctly handling the
group structure of unit quaternions, the multiplicative
method is able to maintain the fast convergence rates
typical of Newton’s method. By comparing our method
with the global solution obtained from a singular-value
decomposition [Bl], we see that our method recovers
the globally optimal solution within a small number of
iterations.

V. Trajectory Optimization for Rigid Bodies

Here we outline the modifications to the ALTRO solver
[B2] to solve trajectory optimization problems for rigid
bodies, which extends easily to arbitrary systems whose
state is in R™ x S3. We consider trajectory optimization
problems of the form,

N-1
minimize  fr(xy) + Z Oolzn. 1
TN, ULN-1 s(@N) 2 k(Th, uk)

subject to  xp41 = f(zk, uk),
gr (g, ur) <0,

hi(xg,up) =0,

where = and u are the state and control vectors as
described in Sec. , f are the dynamics as defined in
(ILQ), 4 is a general nonlinear cost function at a single
time step, N is the number of time steps, and g, hy are
general nonlinear inequality and equality constraints.
ALTRO combines techniques from both differential
dynamic programming (DDP) and direct transcription
methods to achieve high performance on challenging
constrained nonlinear trajectory optimization problems.
Like most methods for nonlinear optimization, ALTRO
iteratively approximates the nonlinear functions f,¥¢,g,
and h with their first or second-order Taylor series expan-
sions. Leveraging the methods from Sec: [1I, we adapt the
algorithm to optimize directly on the error state dz € R'2:

Tk — Tk
—1/=—1
bup = |9 (@ ® ) (25)
Ve — Uk
W — Wk

We begin by linearizing the dynamics about the refer-

ence state and input trajectories, T and @, using ([L§). The
linearized error dynamics become,
0xk41 = Ardzry + Broug, (26)
where
0]
Ak’ = E(Ii‘k—Fl)Ti ik.ﬁkE(i‘k)a
By, = E(ka)T% I
and E(xy) € R13*12 is the error-state Jacobian:
I3
B = | €9 (28)
3
I3

By applying (@) and (@) to the nonlinear cost functions
¢ and (@) to the nonlinear constraint functions gy and hy,
we can calculate the second-order expansion of the cost
function:

1 1
0l(x,u) ~ §5xT£m5x + §6uT€uu5u + 5$€ux5x

+ 262" + 0L ou.  (29)

With these results, we can apply standard Newton and
quasi-Newton techniques along the lines of Section @ We
can also calculate a second-order expansion of the “action-
value function” @Q(z,u) needed in DDP and LQR-based
methods,

Quz = luw + AL Pry1 Ay (30)
Quu = lun + Bf Py1 By, (31)
Quaz = lus + Bj; Pey1Ax (32)
Qo = Lo + Al pri (33)
Qu = lu + B{prs1, (34)

from which we can calculate the quadratic expansion of
the cost-to-go P, € R¥2X12_ p, € R'2, and optimal linear
feedback gains K € R™*12 and feed-forward corrections
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di € R™ by starting at the terminal state and performing
a backward Riccati recursion as usual [@}, [@)

During the “forward rollout” of these methods, the
dynamics are simulated forward in time using updated
control inputs:

up = Uy — di — Kpdzy. (35)

where % is the control value from the previous iteration,
and dz is computed using (RH). For more details on the
ALTRO algorithm, we refer the reader to [32].

A. Quaternion Cost Functions

In addition to the straight-forward modifications to
the ALTRO algorithm itself, some care must be taken
in designing cost functions that are well-suited to unit
quaternions. We frequently minimize costs that penalize
distance from a goal state, e.g. 3(z — z4)TQ(z — z,);
however, naive substraction of unit quaternions does not
respect their group structure, and often results in unde-
sired behavior. Instead, we have found the following cost
function, which penalizes the geodesic distance between
two unit quaternions [14], to work well in practice:

Jgeo = (1 - |QgQ|) (36)

Its gradient and Hessian are,
vJgeo = - Slgn(ng)ng(q) (37)
V2 Jgeo = sign(q, q) 134, q, (38)

where sign denotes the signum function. This cost function
is particularly useful for rotations since it eliminates the
ambiguity arising from the quaternion double-cover of

SO(3).

VI. Experiments

In this section we present several trajectory optimiza-
tion problems for systems that undergo large changes in
attitude: an airplane barrel roll, a quadrotor flip, and
a satellite with flexible solar panels that must slew to
a new orientation while avoiding a keep-out zone. All
problems are run using ALTRO, first without any of the
modifications presented in the current paper, analagous
to the naive Newton’s method in section @ and labeled
“naive”, and then using the modifications listed in_Sec.

and the geodesic cost function described in Sec. ,
labeled “modified”. All cost functions are of the following
form:

1 1
énaive(x; u, T, Qa R) = i(x — E)TQ(JJ — .f) + §UTRU
(39)
gmodiﬁed(xa u, ;Z', Qv R) = gnaive(zy u, jv Qa R) + ’LU(]. + qTQ)
(40)

where Z is the reference state and Q =
diag(Q,, 04, Qv, Qu,), with Q,,Q,,Q, being the weights
of @ for position, and linear and angular velocity,
respectively.

TABLE 1
Trajectory Optimization Timing Results (naive/modified)

Problem Iterations  time (ms)

barrellroll 23 / 17 105.74 / 72.64
quadflip 31/ 25 505.59 / 433.59
satellite 16 / 17 170.98 / 263.10

Fig. 3. Barrel roll trajectory computed by ALTRO using a terminal
cost to encourage an upside-down attitude.

Timing results are summarized in Table ﬂ All exper-
iments are solved to a constraint satisfaction tolerance
of 1075 and discretized with a 4th order Runge-Kutta
integrator. The results were run on a laptop computer
with a 2.8 GHz i7-1165G7 processor with 16 GB of RAM.
Code for all experiments is available on GitHub®.

A. Airplane Barrel Roll

A 180 degree barrel roll trajectory for a fixed-wing
airplane was optimized. The airplane’s dynamics model
consists of the a simple rigid body as defined in Section
with forces and torques due to lift and drag fit from
wind tunnel data [B4]. The airplane was tasked to do a
barrel roll by constraining the terminal state to upside-
down (see Fig. B). To mitigate issues with integration
error and drift in the magnitude of the quaternion,
the following constraint function was used to enforce a
terminal orientation of §:

Ao g, sign (qTi) =0
[lall lal
The solver was initialized with level flight trim con-
ditions. The convergence of the different versions of
ALTRO is compared in Fig. . As expected, the modified
version achieves better convergence and faster solve times
compared to the naive version since the expansions being
provided to the algorithm more accurately capture the
relationship between the attitude state and the goal
and constraints. For this relatively simple problem, we
gained a modest 31% improvement in runtime, despite
the additional matrix multiplications when calculating the
cost and constraint expansions.

(41)

B. Quadrotor Flip

A 360 degree flip trajectory for a
timized with dynamics adapted from |

uadrotor was op-
|. To encourage

Thttps://github.com/RoboticExplorationLab/
PlanningWithAttitude
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—— naive
modified
| | | | | |

0 5 10 15 20 25
iterations

contraint satisfaction

Fig. 4. Constraint satisfaction as a function of iteration when solving
the barrel roll problem using ALTRO both with and without the
modifications for optimizing unit quaternions.

the flip, we specified a “waypoint” cost function of the
following form:

Z g(.’lﬁ'k,U}g,i‘,Q,R) + Z Z(xk7ukaa?k7Qva) (42)

keN kew

where #, Q are the nominal state and state weight
matrix, @, is the weight matrix for the waypoints, and
W = {20,45,51,55,75,101}, N' = {1 : 101} \ W. Four
intermediary “waypoints” were used to encourage the
quadrotor to reach angles of 90°, 180°, 270°, and 360°
around an approximately circular arc. The last waypoint
was used to encourage the quadrotor to move towards
the final goal, and the first kept it above the floor before
starting the loop. The solver was provided a dynamically
infeasible initial trajectory that linearly interpolates be-
tween the initial and final states, rotating the quadrotor
around the x-axis a full 360°.

Figure E shows snapshots of the trajectory as generated
using ALTRO. To compare the convergence properties of
the two methods, the optimal state and control trajectories
were perturbed with random Gaussian white noise with a
mean of 1 for position, linear velocity, and angular velocity,
0.1 for the controls, and 145 degrees for the orientation
(about a random axis). As shown in Fig. fj, the modified
method converges more reliably than the naive method. It
is also worth noting that this problem could not be solved
using any three-parameter attitude representation, since
it passes through the singularities at 90°,180°, and 360°
associated with Euler angles, Rodrigues parameters, and
Modified Rodrigues Parameters, respectively.

C. Satellite Attitude Keep-Out

A spacecraft with flexible appendages was tasked to
perform a 150 degree slew maneuver while ensuring that
a body-mounted camera did not point within 40 degrees of
a “keep-out zone” around the sun vector. The spacecraft
dynamics are presented in detail in [36], and are based on
equation ([L() with the addition of six states to account for
three flexible modes. Control torques are generated by four
reaction wheels. A quadratic cost function penalizes error
from the desired final attitude as well as displacement of

Fig. 5. Snapshots of the quadrotor flip trajectory. The gree-colored
quadrotors represent the state near t=0 s and the red-colored
quadrotors represent the state near t=5.0 s

Percent Success

Modified

Nalve

Fig. 6. Convergence comparison for quadrotor flip. Percent of 100
trials that successfully converged, where each trial is initialized
with locally-optimal trajectories perturbed with significant Gaussian
white noise.

the flexible modes. We enforce the camera keep-out zone
with the following constraint,

(Mraun)” (VAP Pream) < cos(40°),  (43)
where Brg,,, is the camera line-of-sight unit vector in the
body frame and Wr,,, is the unit vector pointing to the
sun in the world frame. The attitudes that satisfy this
constraint comprise a non-convex set, with the constraint
itself being nonlinear in q.

ALTRO is able to converge to a locally optimal tra-
jectory for this problem without an initial guess (all
controls were initialized to zerg). The resulting attitude
trajectory is depicted in Fig. [. Without enforcing the
camera constraint, the trajectory passes through the keep-
out zone. As noted in Table ﬂ, the quaternion modifications
did not result in a significant improvement over the naive
implementation of ALTRO for this problem, indicating
that the computational benefits are problem dependent.
We hypothesize that the more dynamic behaviors in
the other examples benefit more from the quaternion
modifications than the relatively slow-moving spacecraft.
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0 1 2 Ly
®2

constraint surface

s Unconstrained

constrained

Fig. 7. Visualization of the flexible spacecraft slew with a keep-
out zone. Attitude is parameterized with a Rodrigues parameter to
visualize the trajectory in three dimensions. The constraint surface
represents attitudes where the camera line-of-sight is within 40° of
the sun. The unconstrained solution violates this constraint, while
the constrained solution is able to avoid the keep out zone.

VII. Conclusions

We have presented a general, unified method for
optimization-based planning and control for rigid-body
systems with arbitrary attitude using standard linear
algebra and vector calculus. The application of this
methodology is straightforward and yields substantial
improvements in the convergence of Newton and DDP-
based methods, while also offering improvements for
nonlinear constrained trajectory optimization for floating-
base systems.

Many state-of-the-art trajectory optimization methods,
including direct collocation and sequential convex pro-
gramming, rely on general-purpose optimization solvers
whose internal numerical methods are not exposed to the
user. Therefore, these methods are unable to exploit the
full structure of both the trajectory optimization problem
and the rotation group at a low level. In contrast, we are
able to implement deep, native support for quaternions
into the ALTRO solver, making it possible to solve more
challenging problems with higher performance than other
algorithms.

In future work, we plan to apply ALTRO to real-time
model-predictive control problems for aerial vehicles like
quadrotors and airships that experience large attitude
changes. The methods we have presented can also be
leveraged to adapt other classes of gradient or Newton-
based algorithms to exploit the structure of 3D rotations.
Future directions beyond trajectory optimization may
include simulation and planning methods that leverage
maximal-coordinate formulations of multi-body dynam-
ics [37], system-identification for complex multi-body sys-
tems and fixed-wing aircraft in post-stall conditions, and

state estimation for spacecraft with sparse measurements.
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