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Online Kinematic Calibration for Legged Robots
Shuo Yang, Howie Choset, Zachary Manchester

Abstract—This paper describes an online method to calibrate
certain kinematic parameters of legged robots, including leg
lengths, that can be difficult to measure offline due to dynamic
deformation effects and rolling contacts. A kinematic model of
the robot’s legs that depends on these parameters is used, along
with measurements from joint encoders, foot contact sensors, and
an inertial measurement unit (IMU) to predict the robot’s body
velocity. This predicted velocity is then compared to another
velocity measurement from, for example, a camera or motion
capture system, and the difference between them is used to
compute an update on the kinematic parameters. The method
can be incorporated into both Kalman filter or sliding-window
optimization-based state estimator. We provide a theoretical
observability analysis of our method, as well as validation both in
simulation and on hardware. Hardware experiments demonstrate
that online kinematic calibration can significantly reduce position
drift when relying on odometry.

Index Terms—Legged Robots, Calibration and Identification,
Probability and Statistical Methods

I. INTRODUCTION

STATE estimation and control algorithms for legged robots
depend critically on leg kinematic parameters. During

locomotion, a planner calculates foot positions to generate
collision-free foot-swing trajectories [1], and an estimator
computes foot velocities to estimate the robot body’s velocity
[2], [3]. Foot positions and velocities are calculated using
the forward kinematics [3], [4], which depend on kinematic
parameters such as leg link lengths and motor offset distances.

On legged robots, the Leg Odometry (LO) [5] is commonly
used to estimate robot body velocity. Assuming non-slipping
contact, the joint angle velocity measurements of a leg can
be mapped into a body velocity estimation by the Jacobian of
the forward kinematics. Inaccurate leg-length knowledge can
lead to velocity estimation errors, as shown in Fig. 1b, which
prevent the robot state estimator from getting correct odometry
information.

Existing legged robot controllers usually use fixed leg-
length values obtained from a 3D model of the robot or
manual measurement [3], [6], [7]. However, actual kinematic
parameters are often not precisely known due to manufacturing
variations, wear over time, rolling contacts, and dynamic
deformation during normal operation (see Fig. 1a). Taking
the Unitree A1 robot’s kinematic structure as an example [8],
its deformable foot makes the calf link length vary between
0.19-0.22 m. When the robot moves at 2.0m/s, joint angle
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Fig. 1: (a) Foot compression during locomotion changes calf
length. (b) Body velocity inferred from kinematics of the
Leg 2 (front-left) with wrong calf length (yellow) has larger
error comparing to that using calibrated length (red). we
enlarge possible leg length error to make velocity error more
perceptible. The shaded green regions are periods when the
leg not contacts the ground, during which the LO velocity is
meaningless. (c) Our method calibrates calf length of the Leg
2 to around 0.21m (dash line) whatever the initial length value
is.

velocity can reach 20rad/s, then a 0.01m error in link length
leads to 0.2m/s velocity estimation error. If we integrate this
poor velocity estimate to get a position estimate, position drift
can grow by 0.2m every second. Moreover, it is possible for
the leg to experience sudden length changes due to external
impacts or damage. Although the controller may be robust
enough to maintain balance [9], knowledge of the new length
can greatly improve stability and reduce foot slip. Therefore,
online calibration of kinematic parameters can be hugely
beneficial during robot operation.

We propose a method to enable legged robots to calibrate
unknown kinematic parameters online. We design a velocity
measurement model that compares the LO velocity with
accurate body velocity information from an external motion-
capture system or visual odometry [10], and use the difference
between these measurements to update the kinematic parame-
ters. This can be integrated into many standard state-estimation
algorithms so that kinematic parameters can be estimated in
real time together with the robot’s state.

We present experiments with a Kalman filter that demon-
strate position drift can be reduced by up to an order of
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magnitude through online calibration. We also show doing
online calibration in an optimization-based sliding-window
state estimator [11] is possible.

The paper proceeds as follows: In Section II we survey
related work in kinematics calibration and legged robot state
estimation. Section III reviews Kalman filtering and forward
kinematics. In Section IV we define the calibration problem,
derive our solution, and provide an observability analysis. The
results of simulation and hardware experiments are presented
in Section V. Finally, Section VI concludes the paper.

Our contributions include:
• A measurement model to calibrate unknown kinematic

parameters of legged robots online and reduce odometry
drift.

• A theoretical observability analysis to examine which
kinematic parameters are observable.

• Integration of the measurement model into two different
state estimators.

• Experimental validation on a Unitree A1 robot.

II. RELATED WORK

Kinematics calibration for robot manipulators has been stud-
ied for decades [12]. Standard methods use the error between
the end-effector position output from the forward kinematics
model and position measurement from an accurate sensor to
update the model parameters. Early calibration approaches re-
lied on laser trackers [13]. Today, “hand-eye” calibration with
computer vision is accurate enough to calibrate manipulators
and even humanoid robot arms [14].

Online parameter calibration during state estimation has
also been investigated in multi-sensor fusion. When using
different sensors together to estimate robot pose (position and
orientation), rigorous observability proofs have demonstrated
that the extended Kalman Filter (EKF) [10], [15] can estimate
spatial transformations among sensors (extrinsics). The visual-
inertial system (VINS) [16] calibrates not only IMU-camera
extrinsics parameters, but also sensor time delay in a sliding-
window (also called fix-lag smoother [17] or receding-horizon
[18]) optimization based estimation scheme. This work shows
that, in visual-inertial odometry, jointly estimating robot state,
sensor bias, and sensor transformations can reduce long-term
position estimation drift. The observability study of these
parameters to guarantee that they can be estimated in both
EKF and optimization-based state estimators is done in [19].

State estimation for legged locomotion has been a thriv-
ing research area in recent years, but only a few existing
works consider online kinematics-parameter calibration, and
the effects of parameter variations over time on estimator
performance has not been well studied in the literature. Fusing
IMU data and LO velocity in Kalman filters has been used on
several different robots [2], [3], [5]. The invariant EKF was
introduced in [20] to improve filter convergence. Optimization-
based methods were proposed in [7], [21], [22]. The position
drift due to leg odometry was studied in [23], where drift was
compensated by a body velocity bias.

With the aid of special markers, “foot-eye” kinematics
calibration on legged robots was demonstrated in [24]. The
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Fig. 2: Frames & Kinematic parameters of A1 robot.

authors of [25] calibrated camera extrinsics in an optimization-
based legged robot state estimator. A measurement model
to allow the robot’s controller to adapt to dynamic model
changes online was proposed in [26]. Dynamic deformation
during bipedal locomotion was considered in [27], where the
deformation is modeled as rotations among links. Estimating
the deformation improves both position estimation and control.
Finally, the kinematics calibration method proposed in [28] is
similar to ours. However, it runs an expensive offline batch
optimization and no observability analysis is provided.

III. BACKGROUND

We now review some concepts from legged robot state esti-
mation and introduce notations. In general, we use lowercase
letters for scalars and frame abbreviations, boldface lowercase
letters for vectors, and upper case letters for matrices and vec-
tor sets. The operation [a;b;c] vertically concatenates elements
a, b and c with the same type (scalar, vector, or matrix). The
operator bvvvc× converts a vector vvv = [v1;v2;v3] ∈ R3 into the
skew-symmetric “cross-product matrix,”

bvvvc× =

 0 −v3 v2
v3 0 −v1
−v2 v1 0

 , (1)

such that vvv× xxx = bvvvc×xxx.

A. Coordinate Frames & Quaternion

Important coordinate frames are shown in Fig. 2. To sim-
plify discussion, we assume that the IMU frame and the robot’s
body frame coincide. We use ppp and qqq to denote the translation
vector and the unit-quaternion rotation, respectively, from the
robot body frame to the world frame. We follow the quaternion
convention defined in [29]. A quaternion qqq = [qw;qqqv] has a
scalar part qw and a vector part qqqv = [qx;qy;qz]∈R3. We define
the two matrices,

L(qqq) =
[

qs −qqq>v
qqqv qsI + bqqqvc×

]
and R(qqq) =

[
qs −qqq>v
qqqv qsI−bqqqvc×

]
,

such that the product of two quaternions can be written as,

qqq1⊗qqq2 = L(qqq1)qqq2 = R(qqq2)qqq1. (2)

It can also be shown that the inverse of a unit quaternion
qqq is qqq−1 = [qw;−qqqv] and qqq⊗ qqq−1 = qqqI = [1;000], the identity

quaternion. We also introduce a matrix B=

[
0

I3x3

]
that converts
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a vector in R3 to a quaternion with zero scalar part. The
rotation matrix A(qqq) can then be written in terms of qqq as,

A(qqq) = B>L(qqq)R(qqq)>B. (3)

Small rotation approximation plays an important role in
orientation estimation. We parameterize small rotations using
Rodrigues parameters δθθθ ∈R3 and map them into unit quater-
nions using the Cayley map [29]:

δqqq = Φ(δθθθ) =
1√

1+‖δθθθ‖2

[
1

δθθθ

]
. (4)

Assuming the true orientation of a robot is qqq and our estimate
is q̂qq, we define the error as δqqq = q̂qq−1⊗qqq. We use the inverse
Cayley map [29] Φ−1(qqq) = qqqv/qs to convert the estimation er-
ror into Rodrigues parameters δθθθ . Therefore qqq = L(q̂qq)Φ(δθθθ).

B. IMU-driven Error-state Kalman Filter

One of the standard approaches to estimate a robot’s pose
and velocity is the error-state KF [30]. Let xxxk = [ppp;qqq;vvv]∈R10

be the true robot state at time step k, where ppp ∈ R3 is the
robot position in the world frame, qqq is the robot’s orientation
quaternion, and vvv∈R3 is the linear velocity of the robot’s body
represented in the world frame. We also denote the estimate of
the robot’s state as x̂xxk = [p̂pp; q̂qq; v̂vv]. State errors are parameterized
as δxxxk = [δ ppp;δθθθ ;δvvv] ∈ R9 = [ppp− p̂pp;Φ−1(q̂qq−1⊗qqq);vvv− v̂vv].

Assuming the robot’s body has an IMU that outputs bias-
free linear acceleration aaa ∈ R3 and angular velocity ωωω ∈ R3

at time k, The discrete error-state process dynamics δxxxk+1 =
f (δxxxk,aaa,ωωω,nnn) are [30]:

δ pppk+1 = δ pppk +δvvvk∆t +nnnv (5)
δθθθ k+1 = (I−bωωω∆tc×)δθθθ k +nnnω (6)
δvvvk+1 = δvvvk−A(qqq)baaa∆tc×δθθθ k +A(qqq)nnna, (7)

where ∆t is the time between two IMU readings and nnn =
[nnnv;nnnω ;nnna] contains random noise sampled from a Gaussian
distribution. We refer readers to [30] for a detailed derivation
of the process dynamics.

In addition to an IMU, other sensors may provide obser-
vations of the robot’s state. For example, a motion-capture
system or cameras can measure the robot’s pose [10]. We use
zzzk = h(xxxk) + nnnr to denote such noisy sensor measurements,
where nnnr is assumed to be Gaussian noise.

Assuming an estimate of the current state x̂xx and its co-
variance Pk, the error-state KF uses linearizations of the state
dynamics f and the measurement model h,

Fx =
∂ f

∂δxxx

∣∣∣∣
x̂xx,ωωω,aaa

, Fn =
∂ f
∂nnn

∣∣∣∣
x̂xx,ωωω,aaa

, and H =
∂h
∂xxx
|x̂xx, (8)

to propagate the covariance forward in time, [30]

Pk+1|k← FxPkF>x +FnΣFn, (9)

where Σ is the covariance of nnn. This is often called the
process update. Next, the Kalman gain is calculated [31] and

a measurement update is performed:

K = Pk+1|kH>(HPk+1|kH>+Q)−1, (10)

δx = K[zzzk−h(x̂xxk)], (11)
Pk+1← (I−KH)Pk+1|k, (12)

where Q is the covariance of the measurement noise nnnr. Finally
we update the state estimate using the error state:

p̂ppk+1← p̂ppk +δ p̂pp, (13)
q̂qqk+1← L(q̂qqk)Φ(δθθθ), (14)
v̂vvk+1← v̂vvk +δ p̂pp. (15)

C. Sliding-Window Optimization-Based State Estimation

Sliding-window or receding-horizon optimization-based
state estimators are preferred when a vision sensor is involved
because handling large numbers of camera image features
is difficult in a KF [32]. The key idea of sliding-window
optimization is to construct a nonlinear least-squares problem
at time k

min
X

{
∑

i

∥∥ri(X ,Z )
∥∥2

Σi

}
, (16)

where X is a set of robot states at past N time steps and Z is a
set of past sensor measurements, and ri(X ,Z ) is a residual or
“innovation” function based on the same measurement model
used in the KF.

D. Forward Kinematics & Leg Odometry Velocity

In this section we review the forward kinematics and
describe how to infer the body velocity from the kinematic
functions. For the jth leg of a legged robot, we define φφφ

as a vector containing all joint angles. Joint angle velocities
are put in φ̇φφ . The forward kinematics function is denoted as
ppp f = g(φφφ) ∈ R3, whose output is the foot position in the
robot body frame. The derivative of this equation leads to
the Jacobian matrix J(φφφ) that maps φ̇φφ into the foot’s linear
velocity in the body frame:

vvv f = ṗpp f = J(φφφ)φ̇φφ . (17)

Assuming the j’th foot is in contact with the ground and
does not slip, g and J can be used to calculate the body velocity
of the robot. Let pppw

f denote the foot position in the world frame
(see Fig. 2); It is a function of the robot’s body position ppp and
joint angles φφφ :

pppw
f = ppp+A(qqq)ppp f = ppp+A(qqq)g(φφφ). (18)

Let the time derivative of pppw
f be vvvw

f . The no-slip assumption
means vvvw

f = 0. Therefore, by differentiating (18), we have

0 = vvvw
f = ṗppw

f = ṗpp+A(qqq)
d
dt

g(φφφ)+
d
dt

A(qqq)g(φφφ). (19)

It is shown in [4] that d
dt A(qqq) = A(qqq)bωωωc×, and we defined

vvv = ṗpp. Therefore from (19) we derive an expression for the
body velocity in the world frame:

vvv =−A(qqq)[J(φφφ)φ̇φφ + bωωωc×g(φφφ)]. (20)
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This velocity is called the LO velocity because its integration
is the body displacement [33].

IV. TECHNICAL APPROACH

The key idea underlying our technical approach is to treat
the LO velocity (20) as a measurement of the robot body’s
velocity that is dependent on a set of kinematic parameters
ρρρ for each leg. We then append ρρρ to the filter state. The
dimension of ρρρ depends on the kinematic structure of the
leg. For example, if we are estimating calf leg lengths of a
quadruped robot, ρρρ = [lc1; lc2; lc3; lc4]∈R4, where lci is the calf
length of leg i. If both the calf and the thigh leg lengths need
to be considered, then ρρρ = [. . . , lci; lti, . . . ], for i = 1,2,3,4,
has dimension 8. We also write ρi to indicate the kinematic
parameters related to leg i.

A. Body Velocity Measurement Model

We modify (20) to explicitly include kinematics parameters
and sensor noise. For leg i, assuming the joint encoders on
the leg measure joint angles φφφ i and angular velocities φ̇φφ i with
additive Gaussian noise Gaussian nnnφ and nnn

φ̇
, repsectively, then

the true LO velocity in the world frame is

vvvm,i =−A(qqq)[J(φφφ i−nnnφ ,ρρρ i)(φ̇φφ i−nnn
φ̇
)−bωωωc×g(φφφ i−nnnφ ,ρρρ i)].

(21)
We also define an estimated LO velocity as

v̂vvm,i =−A(q̂qq)[J(φφφ i, ρ̂ρρ i)φ̇φφ i−bωωωc×g(φφφ i, ρ̂ρρ i)]. (22)

When the leg i has non-slipping contact with the ground, it
contributes to a measurement model

zzzleg = hleg(x̂xx,ωωω,φφφ , φ̇φφ)+nnnc = v̂vv−∑
i

civ̂vvm,i +nnnl(nnnφ ,nnnφ̇
)+nnnc,

(23)
where nnnl is a noise function related to joint encoder noise,
which can be derived from linearizing (21). We assume each
foot of the legged robot has a contact detector [2], [34]
that generates a binary contact flag ci. Therefore, ci = 1
means the foot has nonzero velocity relative to the ground.
Otherwise, the non-slipping assumption of (22) is invalid. nnnc
is a Gaussian measurement noise whose variance is a tunable
hyper-parameter.

B. Kalman Filter Kinematics Calibration

To achieve kinematics calibration using the error-state KF,
we use a new process dynamics model and add the body
velocity measurement (23) to the measurement model.

In the process dynamics, in addition to (5), (6), and (7), we
model the evolution of δρρρ as a random-walk process,

δρρρk+1 = δρρρk +nnnρ , (24)

where nnnρ is a Gaussian white noise.
For the measurement model, we calculate a measurement

vector as zzz = [zzzmocap;zzzcam;zzzleg], where zzzmocap and zzzcam are
measurements from a motion-capture system or camera. zzzleg is
described in (23). The algorithm then proceeds as in Section
III-B.

C. Observability Analysis

Prior research has shown that robot pose and velocity are
observable when the measurement model contains information
from a motion-capture system or camera [10], [15]. Therefore,
we only focus on the observability of the kinematics param-
eters ρρρ in this section. We also note that our observability
analysis applies to both EKF and sliding-window estimators.

Neglecting sensor noise, the dynamics and observation
model for a system with only leg measurements can be written
as,

ẋxx = fc(xxx,aaa,ωωω)

zzz = h(xxx,φφφ , φ̇φφ),
(25)

where fc is the continuous state process dynamics (closely
related to the error-state dynamics (5), (6), and (7)); h is the
measurement model (23) considering just a single leg; and
aaa, ωωω , φφφ , and φ̇φφ are IMU acceleration, IMU angular velocity,
joint angles, and joint angle velocities respectively. We then
compute the observability Gramian [35], [36]

W (xxx0) =
∫ T

0
Φ
>(t)H>(xxxt)H(xxxt)Φ(t)dt, (26)

where Φ(t) is the state transition matrix associated with the
linearized dynamics:

Φ̇(t) = Fx(xxxt)Φ(t), Φ(0) = I. (27)

If W (xxx0) is positive definite along the trajectory from xxx0 to
xxxT , the system is locally observable [36].

For the Unitree A1 quadruped, its important kinematic
parameters are indicated in Fig. 2. ox, oy are offsets distances
between the robot COM and leg base. d is an offset between
motor 2 and 3. lt is the upper leg (thigh) length and lc is
the lower leg (calf) length. The analytical form of the forward
kinematics function is provided in the Appendix. Among these
parameters, we may choose to calibrate ρρρ = [lc] (just the calf
length) or ρρρ = [lt ; lc] (both the calf and the thigh).

We analyze how parameter ρρρ is related to the observability
gramian by expanding blocks in W (xxx0) analytically. From (5),
(6), (7), and (24), we get

Fx =


I 0 I∆t 0
0 I−bωωω∆tc× 0 0
0 −A(q)baaa∆tc× I 0
0 0 0 I

 . (28)

From (28) and (27), Φ(t) is always in the form of

Φ(t) =


I ∗ ∗ 0
0 ∗ 0 0
0 ∗ I 0
0 0 0 I

 , (29)

where “∗”s are nonzero block terms that are not relevant to
our discussion. We linearize (23) to compute,

Hleg =
[
000 A(q̂qq)bJφ̇φφ −bωωωc×gc× I −A(q̂qq)D

]
, (30)

where,

D = (φ̇φφ
>_⊗ I3)

∂vec(J(φφφ , ρ̂ρρ))
∂ ρ̂ρρ

+ bωωωc× ∂g(φφφ , ρ̂ρρ)
∂ ρ̂ρρ

, (31)
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and the vec(·) operator returns a column vector by stacking the
columns of the input matrix [37], and the _⊗ is the Kronecker
product [37].

Plugging (29) and (30) into (26), we can see the last block
of the integrand of W (xxx0) is D>D. Therefore, a sufficient
condition for fully observable ρρρ is the null space of D is empty
or, equivalently, that D has full column rank. An immediate
conclusion we can draw is ωωω and φ̇φφ cannot both be zero,
otherwise D will become a zero matrix. Therefore the robot
cannot stand still or trot in place, since the joint velocities
of stance legs will be close to zero. The rank condition of
D also depends on the forward kinematics function, which
is problem specific since g(φφφ ,ρρρ) may have different forms
depending the robot leg structure. In the Appendix we show
the forward kinematics of the Unitree A1 robot and how to
calculate D. When ρρρ = [lc] or ρρρ = [lt ; lc], D has full rank so
ρρρ is observable.

The observability analysis also suggests we trust the body
velocity measurement model less when D is near singular. We
change the covariance σc of the noise term nnnc in (23) to be
related to the mean of singular values of D.

σc = σ0 +
α1

1+ exp(α2(mean(SV D(D))−α3))
(32)

where σ0 is a constant term, the second term is a logistic
regressor [38] that assigns large value to D close to singular,
which is equivalent to the local unobservablility index (LUI)
proposed in [36]. Thus we call it LUI noise. This noise
function can prevent parameter estimation fluctuation. We will
study its effect in Section V.

V. EXPERIMENTS

All of our hardware and simulation experiments are based
on a Unitree A1 [8] robot. We first verify that the algorithm is
able to converge to unbiased parameter estimates in simulation.
The simulated robot has the same leg structure as that on
the A1 robot, but kinematic parameter values are varied for
testing. We then perform hardware experiments on a real A1
to demonstrate the practical performance of the algorithm.
MATLAB implementations of the error-state KF and the
sensor data we collected are available on GitHub1.

A. Simulation

We implement a simulator in MATLAB to generate sim-
ulated sensor data. We assume a periodic gait and known
initial and final poses of the robot at the beginning and end
of each gait cycle. We also assume perfect contact knowledge
so that, during this gait cycle, contact feet have known fixed
world positions. We use cubic Hermite splines, which are twice
differentiable, to interpolate positions, and quaternion SLERP
[39] to interpolate orientations. Therefore, we can query the
robot’s body position, orientation, velocity, and acceleration
at any time in the gait cycle. From these quantities, we can
calculate body-frame acceleration and angular velocities to
generate simulated IMU data. Additionally, by using inverse
kinematics, we can calculate the joint angles of a leg given a

1https://github.com/ShuoYangRobotics/legged-kinematics-calibration

Fig. 3: Left: The simulated robot and environment landmark
locations. Right: In the simulation we focus on analyzing
how state is estimated within one gait cycle, during which the
body shifts a small distance, feet stand on the ground without
moving, and joints change configuration accordingly.
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Fig. 4: The calf length estimation result using simulation
data. ρρρ = [lc]. In all plots, blue lines are estimated length.
Red dash lines show the 3σ uncertainty envelope. Black dash
lines indicate the ground truth length 0.21m for reference. All
estimations converge to ground truth quickly with final errors
< 0.01m.

body position and a foot position. We also include a camera
based on the pin-hole model [40] to observe landmarks with
known locations in the environment. We generate camera
observations by projecting landmarks onto the camera image
frame [10]. Finally we add random noise to all simulated
sensor data.

We run an error-state KF with the camera and the leg
measurement models on the simulated data. Fig. 4 shows the
calf length estimation result for a 0.1s body trajectory with
a linear displacement of (0.1m,0.1m,0.05m) and orientation
displacement of 5 degrees about the pitch, roll, and yaw axes.
The KF state includes robot body pose, velocity, and calf
lengths lc of all legs. Even if the initial lc values have large
errors, the filter converges to ground truth values quickly with
final errors less than 0.01m. The detailed setup of the error-
state KF can be seen in the open source codebase.

B. Error-state KF Hardware Experiment

We test our calibration method using sensor data from an
actual A1 robot. Its sensors include one IMU, 12 joint encoders
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Fig. 5: (a) The calf length estimation for leg 1 during two
calibration runs. The green line comes from a filter that has
the LUI noise term (32), while the red line is generated by a
filter does not have the term. Both filters have the same other
configurations. Black dash lines indicate time instances when
the robot changes behavior modes. During in-place trotting the
red line drifts significantly. (b) Velocity profile in each mode.
The robot has small body velocity hence small joint angle
velocities when trotting. According to (31), the observability
matrix is very close to singular so the measurement update is
inaccurate.

and 4 foot contact sensors. We implement a robot controller in
C++ following [3]. The robot moves in an arena equipped with
an OptiTrack motion capture system, which provides high-
quality body pose data. Robot sensor data and motion-capture
data with timestamps are recorded as datasets. Although our
filter can easily be run in real time, we perform all experiments
offline so that we can replay the sensor datasets and run the
filter with different settings. We refer interested readers to our
open-source implementation for implementation details.

1) Calibration During Standing Up: In the first experiment,
we record data while the robot stands up from a crouched
pose. All feet are always in contact with the ground. The
process is repeated for four trials and four standing-up datasets
are collected. We then run the error-state KF with kinematics
calibration on each dataset three times with different initial
values lc = 0.1m, 0.2m, and 0.3m. In Fig. 1c, we compare
estimated values of lc against time for each run on one dataset.
In all three runs, the final value reaches around 0.21m after
about 3s. This calibrated value is roughly consistent with
the CAD model value of 0.20m and the foot sensor head
radius of 0.02m, and implies that the soft, deformable foot
is compressed to half of its original size under the robot’s
weight.

2) Calibration During Walking: We move the robot on flat
ground to examine how kinematics calibration performs during
walking. We collect ten datasets with the robot moving at
different speeds and different total travel distances ranging
from 5m to 15m. The calibration results using one of the
datasets is shown in Fig. 6a. Initially all leg calf lengths are set
to 0.2m. After the robot starts to walk, the leg length estimation
fluctuates between 0.19m-0.23m, the range is larger than the
longest possible leg length in CAD model (0.22m). Comparing
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Fig. 6: Results of a hardware dataset run. (a) Calibrated calf
lengths of each leg. The black dash line indicates the mean
value of all lengths (0.2113m). (b) The velocity estimations
using either fixed or calibrated length do not differ much.
The mean square error (MSE) of them from the ground truth
velocity are 0.0041 and 0.0038 respectively. (c) The KF with
calibrated calf length has much smaller position drift than the
KF using fixed calf length. The MSEs from the ground truth
are 0.0018 and 0.0268 respectively.

Fig. 6a, Fig. 6b, and the experiment videos, the maximum leg
length happens when the robot moves forward with relatively
high speed, and the robot feet have rolling contact with the
ground. The rolling contact is equivalent to a slightly longer
leg with fixed point contact.

3) LUI Noise Ablation Study: In Section IV-C we present
an LUI noise term (32). In Figure 5 we show that, without this
term (red line), the calf-length estimation drifts quickly when
the robot is doing in-place trotting, since the observability
matrix is poorly conditioned. When the LUI noise term is
included, the estimation does not change much, as expected.

4) Position Drift Reduction: We show that adding kine-
matics calibration to a baseline IMU and leg odometry filter
can dramatically reduce position estimation drift. Our baseline
filter follows Section III-B, with the IMU driving the process
model and leg odometry captured by the measurement model
(23). We also treat body orientation, as observed by the
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w/o calib with calib Improvement
Vel MSE 0.0023 0.0022 4.3%
Pos MSE 0.0070 0.0016 77.1%

Max Pos Drift 15.0cm 6.2cm 58.6%
Final Pos Drift 7.1cm 4.1cm 42.3%

TABLE I: The table shows the average peformance metrics of
ten datasets and the improvement of using calibrated length.
Max pos drift is the maximum deviation of estimated position
from the ground truth. Final pos drift is the position deviation
at the end of the traveling trajectory.

motion-capture system, as a known quantity following [3].
The baseline filter always uses a fixed leg length of 0.20m
(referred to as “KF w/o calib” in the figure legend). Fig.
6b and Fig. 6c compare the estimated X-direction velocity
and position using either fixed length or calibrated length
shown in Fig. 6a. It can be seen that the KF with calibrated
leg length achieves an order of magnitude better precision
than that using fixed length. Table I summarizes the mean-
squared error in the position and velocity estimates, final
position drifts, and maximum position drifts across the ten
datasets. The kinematics calibration significantly improves
position estimation accuracy in all cases by providing the
estimator with time-varying kinematic parameters.

C. Sliding-Window Estimator Hardware Experiment

We also test our measurement model in the context of
an optimization-based sliding-window estimator. We add the
kinematic parameters and the body velocity measurement
model (23) to the open-source VINS-Fusion [11], one of
the most popular sliding-window estimators. The modified
estimator takes inputs from a single Intel Realsense D435
camera and other legged robot proprioceptive sensors as
measurements. The total cost of the sensor hardware is less
than $2000. We run the estimator on the standing-up datasets.
The kinematic calibration can be done quickly when the robot
stands up. Fig. 7 shows the estimated lc values of different
runs with different initial calf length values. The final mean
length value after the robot finished standing up (6s-11s) is
0.215m, which agrees with the previous experiment using
motion-capture data. However, we observe larger variance with
the sliding-window estimator. We attribute this difference to
the use of visual sensors, which are less accurate than the
motion capture system used in the EKF. This experimental
result confirms that we can perform kinematics calibration
within an optimization-based estimator using low-cost onboard
sensors, while quantitative analysis remains future work.

VI. CONCLUSION & FUTURE WORK

We have presented a method to calibrate kinematic parame-
ters of legged robots online. A detailed observability analysis,
along with simulation and hardware experiments, validate
our method. Kinematics calibration of deformable leg lengths
results in more accurate body velocity estimation and, hence,
significantly lower odometry drift. The calibration method can
be easily integrated into standard state estimator formulations.
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Fig. 7: The calf length calibration results using the optimiza-
tion based state estimator (a modified VINS-Fusion algorithm).
For each of the four standing-up datasets, we run the estimator
three times with different random initial calf lengths. Each
solid curve shows the estimated calf length of each run. The
horizontal dash reference line indicates 0.215m, the mean
value of estimations between 6s to 11s.

In future work, we will investigate kinematic parameter
formulations that can better capture rolling contacts. We
will also research whether jointly estimating robot states and
kinematics parameters can achieve sub-centimeter calibration
accuracy and reduce long term position estimation drift using
the optimization based state estimator.

APPENDIX

The forward kinematics function g of a leg of a Unitree A1
robot with φφφ = [φ1;φ2;φ3] and ρρρ = [lc] is

g(φφφ ,ρρρ) =

 ox− lcs23− lts2
oy +dc1 + ltc2s1 + lcs1c23

ds1− ltc1c2− lcc1c23

 , (33)

where si denotes sin(φi) and ci = cos(φi), where i = 1,2. Also
s23 = sin(φ2 + φ3) and c23 = cos(φ2 + φ3). The expression is
derived using the product of exponentials (POE) method [4].
The Jacobian of g is

J(φφφ ,ρρρ) = 0 −lcc23− ltc2 −lcc23
ltc1c2−ds1 + lcc1c23 −s1(lcs23 + lts2) −lcs23s1
ltc2s1 +dc1 + lcs1c23 c1(lcs23 + lts2) lcs23c1

 , (34)

It is easy to calculate their derivatives with respect to ρρρ

through symbolic computation tools. So

∂g(φφφ ,ρρρ)
∂ρρρ

=

 −s23
c23s1
−c23c1

and
∂vec(J(φφφ ,ρρρ))

∂ρρρ
=



0
c23c1
c23s1
−c23
−s23s1
s23c1
−c23
−s23s1
s23c1


.
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If we let φ̇φφ = [φ̇1; φ̇2; φ̇3] and ωωω = [ω1;ω2;ω3], then

D =

 −φ̇2c23− φ̇3c23−ω2c23c1−ω3c23s1
φ̇1c23c1−ω3s23 +ω1c23c1− φ̇2s23s1− φ̇3s23s1
ω2s23 + φ̇1c23s1 + φ̇2s23c1 + φ̇3s23c1 +ω1c23s1

 . (35)

We can confirm ρρρ is observable because when φ̇φφ and ωωω are
non-zero vectors, the rank of D is 1 regardless of the value of
φφφ . Then D>D is non-singular and the observability gramian
will always be positive definite, thus ρρρ is observable. The same
proof for ρρρ = [lt ; lc] can show it is observable as well.
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