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Jan Brüdigam1 and Zachary Manchester2

Abstract— The linear-quadratic regulator (LQR) is an effi-
cient control method for linear and linearized systems. Typi-
cally, LQR is implemented in minimal coordinates (also called
generalized or “joint” coordinates). However, other coordinates
are possible and recent research suggests that there may be
numerical and control-theoretic advantages when using higher-
dimensional non-minimal state parameterizations for dynamical
systems. One such parameterization is maximal coordinates, in
which each link in a multi-body system is parameterized by
its full six degrees of freedom and joints between links are
modeled with algebraic constraints. Such constraints can also
represent closed kinematic loops or contact with the environ-
ment. This paper investigates the difference between minimal-
and maximal-coordinate LQR control laws. A case study of
applying LQR to a simple pendulum and simulations comparing
the basins of attraction and tracking performance of minimal-
and maximal-coordinate LQR controllers suggest that maximal-
coordinate LQR achieves greater robustness and improved
tracking performance compared to minimal-coordinate LQR
when applied to nonlinear systems.

I. INTRODUCTION

Minimal coordinates (also called generalized or “joint”
coordinates) have historically dominated robotic simulation
and control, possibly due to the perception that they lead
to greater computational efficiency. However, rigid body
dynamics in maximal coordinates with Lagrange multipliers
can be computed with similar efficiency as unconstrained
dynamics in minimal coordinates [1], [2], and a substantial
body of recent work, for example [3]–[5], has suggested that
higher-dimensional linear models may have more descriptive
power than minimal models when approximating nonlinear
systems.

Maximal-coordinate models of robotic systems are math-
ematically expressed as differential-algebraic equations
(DAEs) in continuous time or algebraic difference equa-
tions (ADEs) in discrete time. Unfortunately, the classical
derivation of the linear-quadratic regulator (LQR) is not
well suited to such systems: If applied naively without
explicitly accounting for “joint” or “manifold” constraints
in the dynamics, the maximal-coordinate system will typi-
cally be mathematically uncontrollable, even if an equivalent
minimal-coordinate realization is controllable. It is important
to emphasize that the constraints in maximal-coordinate
systems are not artificial state or input constraints that can be
controlled by an actuator. Rather, they are hard mechanical
constraints that are enforced by the physical structure. Such
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Fig. 1: Basins of attraction for maximal- and minimal-coordinate
LQR when stabilizing the upright equilibrium (black cross) of
an acrobot from different initial configurations. The maximal-
coordinate basin is shown in blue, the minimal-coordinate basin in
red, and the basin for both in green. For this example, the maximal-
coordinate basin includes the entire minimal-coordinate basin and
is significantly larger.

constraints always arise when using maximal coordinates,
but they can also arise in minimal-coordinate settings, for
example, for structures with closed-kinematic loops, during
contact with the environment, or in nonholonomic settings.

In general, there are several approaches to control such
mechanically constrained systems. Manipulator contact has
been treated by constraining the end effector to always be
in contact with the environment and then decomposing the
system into subsystems relating to motion on and off the
constraint manifold [6], [7]. Contact arising with walking
robots has been handled by deploying specialized control
algorithms on the constraint manifold [8], [9]. Systems with
more general holonomic and nonholonomic constraints have
been treated in a similar manner by either splitting the system
into subsystems [10] or by analyzing the behavior on the
constraint manifold [11]. Generally, the described methods
are based on minimal (or reduced) coordinate representations
and aim at reducing, splitting up, or eliminating the effect
of constraints. A more mathematical perspective on mechani-
cally constrained systems can be obtained by treating them as
differential-algebraic equations (DAEs). General control of
DAEs can be achieved with a variety of nonlinear feedback
laws [12], [13]. Optimal control of nonlinear DAEs has
also been proposed [14], [15], and methods for systems
described by linear DAEs have been developed as well [16],
[17]. For the purpose of deploying linear control methods,
mechanically constrained systems and DAEs can also be



linearized [18]. One common method for the linearization
of mechanical systems described in minimal coordinates
is to split the coordinates into independent and dependent
variables [19], [20]. For an overview of more general lin-
earization schemes for arbitrary coordinates in continuous
time see [21].

The linear-quadratic regulator is a well-established control
scheme for (locally) linear systems. However, LQR variants
are typically used with minimal-coordinate representations
and mechanical constraints are eliminated before deriving a
controller [22]–[24]. There is also a wide variety of state-
and input-constrained LQR control laws, for example [25]–
[29], but these constraints are “virtual.” As such, they can
be physically violated, and part of the control task is to
ensure constraint satisfaction by an appropriate choice of
inputs. As stated above, the nature of mechanical constraints
and maximal-coordinate systems treated in this paper is
fundamentally different.

Maximal coordinates represent the six degrees of freedom
of each body in an articulated structure and the connections
between bodies are expressed by explicit joint constraints.
Several methods have been developed to efficiently compute
dynamics of systems described in maximal coordinates, for
example [1], [2]. A related approach for trajectory opti-
mization can be found in [30]. Control of systems de-
scribed in maximal coordinates has been mainly developed
for individual vehicles, such as underwater, land, or aerial
vehicles [31]–[33]. In contrast, control of articulated systems
parameterized in maximal coordinates has found very little
attention. Some ideas related to this concept can, however,
be found in cooperative robotics, where several individual
vehicles form a virtual articulated structure when performing
a common task [34], [35].

Currently, there exist some derivations of continuous-time
LQR for DAEs [16], [17], and we will add to these concepts
by providing a discrete-time LQR derivation for ADEs in
Sec. II-C. The resulting control law will subsequently be
used in Sec. III for the case study of a simple pendulum
to demonstrate that a linear maximal-coordinate control law
can be interpreted as a nonlinear control law in minimal
coordinates leading to potentially improved performance.
This insight is further supported in Sec. IV by comparing the
basins of attraction of time-invariant LQR feedback laws in
minimal and maximal coordinates, see Fig. 1 for an example,
and by a comparison of trajectory tracking performance
with time-varying LQR in minimal and maximal coordinates.
Lastly, Sec. V provides a discussion and Sec. VI summarizes
our conclusions.

II. BACKGROUND

We will briefly depict the treatment of rigid body dynamics
in maximal coordinates (see [1] or [2] for details). Subse-
quently, we review the derivation of the classical uncon-
strained linear-quadratic regulator (LQR) from the dynamic
programming principle with Riccati recursion (see [36] for
details), and then state the Riccati recursion for LQR in
maximal coordinates.

Link a
Link b

Global frame

xa, qa xb, qb

Fig. 2: Two links connected by a joint. Adopted from [2].

A. Maximal Coordinates

A single rigid body in space can be described by a position
x ∈ R3, a velocity v ∈ R3, an orientation (unit quaternion)
q ∈ R4, and an angular velocity ω ∈ R3. We can group
these quantities into a vector

z =
[
xT vT qT ωT

]T
. (1)

One or more bodies can be subject to constraints g which
can, for example, represent joints. One example of such a
physical constraint is the revolute joint connecting links a
and b in Fig. 2. Such constraints on two bodies can generally
be written as implicit equations

g(za, zb) = 0. (2)

For each body, we can generally write the unconstrained
dynamics as implicit equations in discrete time:

d0(zk, zk+1,uk) = 0, (3)

where k is the current time step and uk are control inputs
to the system, assuming a zero-order hold on the controls.

Constraints can be treated by introducing Lagrange mul-
tipliers (constraint forces) λ into the dynamics equations:

d(zk, zk+1,uk,λk) = d0 −GTλk = 0, (4)

where G is the Jacobian of constraints g with respect to z.
The dynamics equations d and the constraints g of mul-

tiple bodies form a system of algebraic difference equations
(ADEs).

B. Classical Riccati Recursion

The linear-quadratic regulator (LQR) can be derived for
four different scenarios: finite or infinite horizon, and discrete
or continuous time. The Riccati recursion is one method to
derive LQR for all four scenarios, and, while not always the
most efficient method for each scenario, we will build on it
for the remainder of the paper for clarity.

For discrete-time systems with a finite horizon, the Ric-
cati recursion produces feedback gains at each time step.
Continuing the recursion further leads to convergence of the
feedback gains, which is simply the solution to the infinite-
horizon problem. Furthermore, by taking the limit of the
discrete time step as it goes to zero, we can recover the
continuous time feedback gains for both finite-horizon and
infinite-horizon settings.

We will provide the basic derivation of the classical
recursion here to illustrate the general procedure.



The discrete-time optimal-control problem for LQR with
states zk, controls uk, and weight matrices Q and R is:

min J0 :=
1

2
zTNQzN +

1

2

N−1∑
k=0

(
zTkQzk + uT

kRuk
)

s.t. zk+1 = Azk +Buk,

(5)

where the equation zk+1 = Azk + Buk describes the
unconstrained linear dynamics.

The cost-to-go function at time step k is then given by

Jk =
1

2

(
zTkQzk + uT

kRuk
)

+ J?k+1, (6)

with the optimal cost-to-go J?k = min Jk.
A state feedback law u depending linearly on the state z

requires J?k to be of the form

J?k =
1

2
zTk Pkzk. (7)

Inserting (7) into (6) yields

Jk =
1

2

(
zTkQzk + uT

kRuk

+ (Azk +Buk)
T
Pk+1 (Azk +Buk)

)
.

(8)

The optimal control u?k can be found by taking the
derivative of Jk with respect to uk and setting it equal to
zero:

∇uk
Jk = Ruk +BTPk+1 (Azk +Buk) = 0. (9)

Rearranging yields

u?k = −
(
R+BTPk+1B

)−1
BTPk+1Azk (10a)

= −Kkzk. (10b)

Setting (7) equal to (8) after inserting (10) yields an update
rule for Pk after some rearranging:

Pk = Q+KT
k RKk + ĀT

k Pk+1Āk, (11)

where PN = Q and

Āk = A−BKk. (12)

C. Maximal-Coordinate Riccati Recursion

We now provide the derivation of the linear-quadratic
regulator (LQR) for maximal-coordinate systems and general
ADE systems.

Given an implicit discrete-time dynamical system with
implicit constraints

d(zk, zk+1,uk,λk) = 0, (13a)
g(zk+1) = 0, (13b)

we can apply the implicit function theorem to obtain lin-
earized dynamics and constraints

zk+1 = Azk +Buk + Cλk, (14a)
Gzk+1 = 0. (14b)

Assuming linearized discrete-time dynamics and con-
straints of the form (14), we can extend the classical Ricatti

recursion. The optimal control problem (cf. (5)) now includes
additional constraints:

min J0 :=
1

2
zTNQzN +

1

2

N−1∑
k=0

(
zTkQzk + uT

kRuk
)

s.t. zk+1 = Azk +Buk + Cλk,

Gzk+1 = G (Azk +Buk + Cλk) = 0.
(15)

The structures of the cost-to-go function (6) and the
optimal cost-to-go (7) are unchanged. However, inserting (7)
into (6) (cf. (8)) now includes the constrained update rule for
zk+1:

Jk =
1

2

(
zTkQzk + uT

kRuk

+ (Azk +Buk + Cλk)
T
Pk+1 (Azk +Buk + Cλk)

)
,

(16a)
G (Azk +Buk + Cλk) = 0. (16b)

Instead of minimizing (16) like a classical quadratic
program with additional multipliers, we propose a more
direct method to reduce the computational burden. Assuming
linearly independent constraints—a common requirement
for constrained optimization—the constraints (16b) uniquely
define the constraint forces λk(uk) as implicit functions of
uk (and zk). Therefore, we obtain the necessary optimality
condition by taking the gradient of (16a) with respect to uk
(cf. (9)):

∇uk
Jk = Ruk +DTPk+1 (Azk +Buk + Cλk) = 0,

(17)
where

D =
d (Azk +Buk + Cλk)

duk
= B −C (GC)

−1
GB, (18)

and C ∂λk
∂uk

= −C (GC)
−1
GB is obtained by applying the

implicit function theorem to the implicit constraints (16b).
For linearly independent constraints, we now have a non-

singular linear system of equations at each time step:[
R+DTPk+1B DTPk+1C

GB GC

] [
uk
λk

]
= −

[
DTPk+1

G

]
Azk,

(19)
from which we can obtain the optimal feedback laws for uk
and λk (cf. (10)) by inverting the matrix on the left hand
side of (19): [

u?k
λ?k

]
= −

[
Kk

Lk

]
zk. (20)

The matrix K contains the control gains, whereas L models
the mapping of constraint forces during the derivation. In the
physical system, these forces are “automatically” applied, so,
for the actual controller, only K is retained.

As before, the recursive update rule for Pk (cf. (11)) is

Pk = Q+KT
k RKk + ĀT

k Pk+1Āk, (21)

where now
Āk = A−BKk − CLk. (22)

As stated above, the infinite-horizon and continuous-time
control laws can be recovered from this derivation.
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Fig. 3: Comparison of minimal- and maximal-coordinate LQR control laws with the optimal nonlinear control law. Maximal-coordinate
control law (LQR max.) shown in blue, minimal-coordinate control law (LQR min.) in red, optimal control law (NL. optimal) in black.
(a) Control laws for θ̇ = 0. (b) Control laws for θ̇ = 4. (c) Relative error of the LQR control laws compared to the optimal control law.

III. CASE STUDY: SIMPLE PENDULUM

We demonstrate the difference between minimal- and
maximal-coordinate LQR control laws by trying to stabilize a
simple two-dimensional pendulum with mass m = 1, length
l = 1, and inertia J = 1

12 in the upright position. The
minimal-coordinate states of the system are the angle θ and
angular velocity θ̇. The maximal-coordinate states are the
angle θ, angular velocity θ̇, positions x and y, and velocities
ẋ and ẏ with gravity acting along the y-axis.

In order to make the analysis of minimal- and maximal-
coordinate LQR comparable, we only apply weights to
minimal-coordinate states, even when using maximal coor-
dinates. Additionally, the cost functions are defined such
that, in a linearized sense, they have the same value in a
region near the desired state. So, assuming a mapping f
from maximal coordinates z to minimal coordinates c

c = f(z), (23)

the linearized relation between minimal- and maximal-
coordinate cost at the reference point z∗ is given as

cTQc = zTFTQFz, (24)

where F is the Jacobian of f and we choose f such that
f(z∗) = 0. In the case of the pendulum, the cost functions
are also globally exactly the same.

The desired upright state in minimal coordinates is
(θ, θ̇) = (0, 0), with nominal control input u = 0. As
corresponding LQR weights we choose Qmin = diag(1, 1)
and R = 1. In maximal coordinates, the desired state
is (θ, θ̇, x, ẋ, y, ẏ) = (0, 0, 0, 0, 0.5, 0), and Qmax =
diag(1, 1, 0, 0, 0, 0), only applying weights to the minimal-
coordinate states. The resulting minimal- and maximal-
coordinate LQR feedback matrices for this setup are Kmin =
[9.91, 2.76] and Kmax = [−19.30, 0,−4.13, 0, 0.44, 0.69], re-
spectively. It is important to note that in maximal coordinates
we have feedback terms for x and ẋ deviations because of
the mechanical coupling despite not placing any weights on

these states directly. On a real system, we would directly
compute the actual position x = − 1

2 sin (θ) and velocity
ẋ = − 1

2 cos (θ) θ̇ from the measured angle θ and angular
velocity θ̇ to calculate the control error. Therefore, if we
express the maximal-coordinate control in terms of θ and θ̇,
we can obtain the control law

umax(θ, θ̇) = −19.30

2
sin (θ)− 4.13

2
cos (θ) θ̇−0.44θ−0.69θ̇,

which is nonlinear in θ. Note that for small angles θ, i.e.
sin θ ≈ θ, cos θ ≈ 1, we get umax(θ, θ̇) ≈ −10.09θ − 2.75θ̇,
which is the same as the minimal coordinate control law up
to rounding errors.

In Fig. 3 we compared the control laws with the optimal
nonlinear control law for the same quadratic cost function.
The nonlinear control law was obtained with the trajectory
optimization tool ALTRO [37]. Figure 3a shows the resulting
control input for angles θ and a fixed angular velocity θ̇ = 0.
We only show angles from −π2 to π

2 , since the optimal
control law is discontinuous at slightly larger angles, i.e.
the optimal path would be to swing the pendulum the other
way around. As expected, for small angles, the nonlinear,
minimal-coordinate, and maximal-coordinate control laws
roughly match. However, for larger angles, the maximal-
coordinate control law closely follows the nonlinear control
law, while the minimal-coordinate control law deviates. We
also plotted the gravitational torque at a given angle for
reference, since all control laws have to drive the pendulum
against gravity. Figure 3b shows the same analysis for angles
from −π to 0 and a fixed angular velocity θ̇ = 4. As before,
for small angles, the control laws roughly match, and again,
for larger angles, the maximal-coordinate control law follows
the nonlinear optimal control law more closely, even though
initially it shows a slightly larger deviation than the minimal-
coordinate control law. In Fig. 3c we plotted the relative error
compared to the nonlinear control law for the two scenarios
for convenience.
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Fig. 4: Systems for the LQR basin of attraction analysis. Actuated joints highlighted in green. (a) Acrobot. (b) Cartpole. (c) Delta robot.
The base angle of the delta robot is kept constant by parallel structures (not drawn).

IV. SIMULATION

The LQR feedback control was applied to more complex
systems. As the dynamics simulation tool we chose the Con-
strainedDynamics package based on [2] written in the pro-
gramming language Julia. The code for our algorithm and all
experiments is available at: https://github.com/janbruedigam/
ConstrainedControl.jl.

The first part of the simulation analysis consists of deter-
mining the basins of attraction for minimal- and maximal-
coordinate LQR for different systems. The infinite-horizon
time-invariant linear controllers were calculated for a sta-
tionary reference state and closed-loop simulations were
performed from densely sampled initial states. The station-
ary analysis is followed by a time-varying LQR tracking
example. Given a nominal state and control trajectory, we
calculated a linear time-varying model and the corresponding
time-varying LQR. As in the pendulum case study, we only
applied weights to minimal-coordinate states, even when
using maximal coordinates, and we (linearly) matched the
cost functions.

A. Basin of Attraction Setup

For the basin of attraction analysis of each system we
chose initial conditions on a grid spanning the entire config-
uration space with zero initial velocities. We simulated each
system for 25 seconds with a time step of ∆t = 1ms. An
initial condition was counted as inside the basin of attraction
if the system satisfied ‖z − z∗‖ < 0.1 within 25 seconds.
The control inputs were not limited. However, we stopped
simulations if angular velocities exceeded 100π radians per
second as the simulation no longer delivers reliable results
for such excessive velocities. Velocities of this magnitude
indicated instability.

For the analysis, we investigated the acrobot (Fig. 4a),
cartpole (Fig. 4b), and a 2-dimensional delta robot with
closed kinematic loops (Fig. 4c). The control goal for all
three systems was to stabilize an unstable equilibrium point

Link 1 Link 2 Cart Pole Base Upper Lower
m 1.0 1.0 0.5 1.0 0.71 0.5 1.0
J 0.084 0.334 - 0.084 - 0.011 0.084
l 1.0 2.0 0.5 1.0 0.71 0.5 1.0

TABLE I: Mechanical parameters of the systems’ components.

at which the linearization was performed. All weight matri-
ces Q and R are purely diagonal. The mechanical properties
for all components are stated in Table I.

1) Acrobot Setup: The acrobot is a double pendulum
with a single actuator placed between the two links—
mimicking the dynamics of an acrobat—resulting in an
underactuated but controllable system. Generally, inverted
double pendulums are very nonlinear systems which makes
them interesting from a control perspective. The control goal
for the acrobot is to stabilize it in the upright position.

The desired state in minimal coordinates is
(θ1, θ2, θ̇1, θ̇2) = (π, 0, 0, 0) with nominal control
input u = 0. The corresponding LQR weights are
Q = diag(1, 1, 1, 1) and R = 1.

2) Cartpole Setup: The cartpole consists of a pendulum
(pole) mounted on a moving cart. The pendulum is connected
by a passive joint. The actuated cart can only move along
the y-axis. The control goal for the cartpole is to stabilize
the inverted pendulum while keeping the cart near the origin.

The desired state in minimal coordinates is
(yc, θp, ẏc, θ̇p) = (0, 0, 0, 0) with nominal control
input u = 0. The corresponding LQR weights are
Q = diag(1, 1, 1, 1) and R = 1.

3) Delta Robot Setup: Delta robots can be used to perform
many tasks, including pick-and-place and milling. For the
analysis we chose a 2-dimensional delta robot consisting of
five links. The closed kinematic loops of the robot make
a straight-forward application of minimal-coordinate LQR
difficult. In contrast, the maximal-coordinate approach can
handle this system without modifications to the algorithm.
The system is driven by two actuators connected to the base

https://github.com/janbruedigam/ConstrainedControl.jl
https://github.com/janbruedigam/ConstrainedControl.jl
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Fig. 5: Results for the LQR basin of attraction analysis. Maximal-coordinate basins (max.) shown in blue, minimal-coordinate basins
(min.) in red, basins for both in green. The desired configurations are indicated by black crosses. (a) Results for acrobot. (b) Results for
cartpole. (c) Results for the delta robot and indication of structurally infeasible initial configurations.

resulting again in an underactuated but controllable system.
For the control goal, we aimed at treating the delta robot as
an inverted pendulum with the goal of stabilizing the system
in an upright configuration close to the one depicted in Fig.
4c. The system can also be interpreted as an instance of a
bipedal robot with feet pinned to the ground, underactuated
articulated legs (“Lower” and “Upper”), and a torso (“Base”)
that is supposed to be balanced.

The desired state in minimal (reduced) coordinates is
(yb, zb, ẏb, żb) = (0, 1.061, 0, 0) with nominal control in-
puts (u1, u2) = (6.788,−6.788) compensating gravity. The
corresponding LQR weights are Q = diag(100, 100, 1, 1)
and R = 0.01. For all initial conditions we set the “legs” of
the system to be pointing outwards, as depicted in Fig. 4c.

B. Basin of Attraction Results

The results for the simulations of the acrobot, cartpole, and
delta robot are presented in Fig. 5. The regions for maximal
coordinates are colored in blue, the regions for minimal
coordinates in red. Regions for which both maximal- and
minimal-coordinate LQR converged are colored in green.

1) Acrobot Results: The basin of attraction for the acrobot
with minimal-coordinate LQR shows “tilted” regions around
the fully upright (θ1 = π, θ2 = 0) and fully hanging state
(θ1 = 0, θ2 = 0) with connecting regions in between.
A large area that is not stabilizable exists in between the
tilted regions. In comparison, the stabilizable region for
maximal-coordinate LQR has some resemblance in shape but
is significantly larger.

2) Cartpole Results: The cartpole’s basin of attraction for
minimal-coordinate LQR consists of a stabilizable region for
initial pendulum angle deviations within θ2 ≈ ± 1

3π. The
position of the cart does not have a significant effect on
the stability. A few additional stabilizable initial conditions
for hanging pendulum configurations (θ2 ≈ π) were also
detected. For angle deviations within θ2 ≈ ± 1

3π maximal-
coordinate LQR yields almost the same region of attraction.

Additionally, some more stabilizable points can be found for
configurations around the hanging state within θ2 ≈ π± 1

3π.
3) Delta Robot Results: For z-positions above zero, both

minimal- and maximal-coordinate LQR are capable of driv-
ing the delta robot to the desired state at any feasible initial
configuration. The area below zero is less consistent, espe-
cially for minimal-coordinate LQR. In contrast, maximal-
coordinate LQR is still able to drive the system into the
desired position for several initial configurations.

C. Tracking LQR Setup

Tracking of a nominal trajectory with time-varying LQR
was performed on a triple-pendulum cartpole system. The
mechanical properties of cart and poles are the same as for
the single-pendulum cartpole (see Fig. 4b and Table I). The
reference was a swing-up of the triple pendulum into the
upright position, while LQR was deployed to correct for
noise and model errors.

As before, the nominal state and control trajectory were
calculated with ALTRO. Subsequently, a time-varying model
in minimal and maximal coordinates was calculated to obtain
the respective LQR feedback laws. Again, the constant
weight matrices Q and R only applied cost to minimal-
coordinate states and the maximal-coordinate cost function
was matched to first order. The tracked state in minimal co-
ordinates is (yc, θp1, θp2, θp3, ẏc, θ̇p1, θ̇p2, θ̇p3) and the cart’s
control input is u. The corresponding LQR weights are
Q = diag(10, 10, 10, 10, 1, 1, 1, 1) and R = 0.1.

As disturbances, white Gaussian noise (µ = 0, σ = 2)
was added to the control input, viscous friction (k = 0.1) to
the prismatic and revolute joints, and uniformly distributed
([0.9, 1.1]) perturbation factor was multiplied to the masses
and inertias of cart and poles. Additionally, the initial
configurations of cart and poles were uniformly distributed
([−0.1, 0.1]) around the nominal initial configurations. For
both controllers, 1000 runs were observed.



0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

Time (s)

C
os

t
(a) Cost per time step for tracking LQR

min. std.
max. std.
min. mean
max. mean

min. std.
peak at 24.1

0 1 2 3 4 5 6 7 8 9 10
0

200

400

600

Time (s)

A
cc

um
ul

at
ed

C
os

t

(b) Accumulated cost for tracking LQR

min. std.
max. std.
min. mean
max. mean

Fig. 6: Results for the tracking of the perturbed triple-pendulum cartpole swing-up with LQR. Maximal-coordinate mean cost (max. mean)
and standard deviation (max. std.) in blue, minimal-coordinate mean cost (min. mean) and standard deviation (min. std.) in red. (a) Cost
and standard deviation per time step. (b) Accumulated cost and corresponding standard deviation.

D. Tracking LQR Results

The results for the triple-pendulum cartpole tracking ex-
periment are presented as cost per time step in Fig. 6a
and accumulated cost in Fig. 6b. Overall, the tracking of
the perturbed system with minimal- and maximal-coordinate
LQR shows some similarities. For the first 7 seconds, energy
is supplied to the system by swinging back and forth. During
this period, both controllers manage to keep the incurred cost
low. After 7 seconds, the final swing-up into the upright
position takes place. An overall increase in cost per time
step during the second phase becomes visible in Fig. 6a, and
especially the minimal-coordinate controller incurs increased
cost. Additionally, a significantly higher cost variance for
minimal-coordinate tracking can be observed in the final
swing-up phase, when both systems diverge further from
the nominal trajectory. Similarly, the accumulated costs for
minimal- and maximal-coordinate LQR start to diverge visi-
bly during the final swing-up phase in Fig. 6b. Additionally,
for the entire run the cost variance of minimal-coordinate
tracking is larger than the maximal-coordinate cost variance.

V. DISCUSSION

The investigation of the resulting control laws for the
simple pendulum in Sec. III demonstrated that there is a
difference between minimal- and maximal-coordinate LQR
control laws, even for matching cost functions, and that
the maximal-coordinate control law can be interpreted as
nonlinear, enabling potentially better performance. This un-
derstanding is supported by the simulation analysis, where,
as expected, both minimal- and maximal-coordinate LQR
are capable of stabilizing the systems under investigation
from initial configurations close to the reference point or
trajectory. However, for larger deviations from the nominal
trajectory, maximal-coordinate LQR appears to be more
robust. This interpretation stems from the larger basins of
attraction for acrobot, cartpole, and the delta robot. And
the tracking LQR problem also reveals interesting insights:
During the first phase, both systems only deviated slightly

from the reference trajectory and, therefore, both control
laws appear to be reasonably accurate. In the second phase,
with overall larger deviations from the nominal trajectory,
the maximal-coordinate LQR performed better, leading to
overall lower cost and cost variance.

It is important to note, however, that further analysis is
necessary to generalize our results. For certain nonlinear
systems or certain regions, minimal-coordinate LQR could
outperform maximal-coordinate LQR, for example, as seen
with the pendulum in Fig. 3c at certain velocities.

VI. CONCLUSIONS

We presented an extension of the linear-quadratic regulator
to systems with physical constraints represented in maximal
coordinates. Our derivation for such systems retains lin-
earized constraints explicitly and directly incorporates them
into the feedback gain calculations. Since the LQR derivation
is built on the standard Riccati recursion, extensions such
as state or input constraints are applicable to our derivation
as well. The LQR controller can be directly deployed to
stabilize systems around nominal trajectories.

The simulation of nonlinear systems suggests superior per-
formance of maximal-coordinate LQR compared to minimal-
coordinate LQR for comparable cost functions. This conclu-
sion is based on the larger basins of attraction of maximal-
coordinate LQR for the analyzed systems which generally
points at a more robust controller. Time-varying tracking
LQR shows comparable behavior for minimal- and maximal-
coordinate LQR when close to the nominal trajectory. How-
ever, maximal-coordinate control appears to be less sensitive
to larger deviations. Analyzing the control laws for a sim-
ple pendulum shows that the nonlinearity of the maximal-
coordinate control law in minimal coordinates is one possible
explanation for these results.

Overall, the results make a strong case for using max-
imal coordinates for linear-quadratic control, even for un-
constrained systems. The ease of incorporating additional
physical constraints during the modeling process adds to this



conclusion. An interesting direction for future work could
be to exploit sparsity when deriving the constrained LQR
controller with additional Lagrange multipliers instead of, or
in addition to, applying the more direct approach proposed
in this paper. The maximal-coordinate LQR approach could
also be extended to trajectory optimization methods such as
iterative LQR (iLQR) or model predictive control (MPC)
schemes based on LQR.
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