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MAGNETORQUER-ONLY ATTITUDE CONTROL OF SMALL
SATELLITES USING TRAJECTORY OPTIMIZATION

Andrew Gatherer∗, Zac Manchester∗

This paper presents a magnetorquer-only attitude control technique that utilizes
trajectory optimization methods to circumvent the underactuated nature of satel-
lite magnetic field interactions. Given a known orbit and desired attitude state,
the method utilizes a nonlinear dynamics model and a fast constrained trajec-
tory optimization solver based on differential dynamic programming to arrive at
a nominal torque profile that respects the spacecraft’s actuator limitations. This
nominal maneuver is then tracked using a time-varying linear-quadratic regulator
(LQR). To demonstrate the effectiveness and robustness of the proposed control
technique, closed-loop Monte-Carlo simulations are performed from a variety of
orbits and initial conditions. Our method is shown to significantly outperform
previous magnetorquer-only control schemes by offering convergence from large
initial errors and fast slew rates that exploit the full performance capabilities of the
actuators. Computational complexity of the method and future implementation in
flight software onboard a CubeSat are also discussed.

INTRODUCTION

Due to the ever-increasing scope of small satellite missions, there is now significant demand for
precise attitude determination and control capabilities onboard CubeSats. Often, traditional attitude
control methods like reaction wheels and thrusters are prohibitively expensive in terms of mass,
volume, power, and cost for CubeSat missions, necessitating alternative approaches.

Interactions between magnetic torque coils and the Earth’s magnetic field have been used for
decades on board satellites to offload momentum from reaction wheels. However, magnetorquers
are inherently underactuated, complicating their application to full three-axis pointing. Beginning
in 1976 with Stickler and Alfriend,1 magnetorquers were suggested as a replacement for reaction
wheels as a form of momentum bias in satellites. Many authors, including Martel and Piaski2 and
Arduinni and Baiocco,3 have illustrated the use of magnetorquers in concert with gravity gradient
systems, which were validated on orbit during the Orsted mission.4 In order to make a truly self-
sufficient magnetorquer control system, some authors, such as Lovera,5 Pittelkau,6 and Psiaki,7 have
capitalized on the near-periodic nature of the Earth’s magnetic field. Magnetorquer-only attitude
control has been tested on orbit by Psiaki8 and Wisniewski4 using a linearized dynamics model
with partial success.

In contrast to these previous approaches, our method does not linearize the satellite attitude dy-
namics, which allows it to handle large initial errors and fast slewing maneuvers that exploit the full
actuator capabilities of the spacecraft. Additionally, a more complex magnetic field model is im-
plemented for better utilization of the Earth’s intricate magnetic environment. Our method is more
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computationally expensive than prior approaches, but is well within the capabilities of the modern
microcontrollers that are typically flown on CubeSats. Finally, it is important to emphasize that this
algorithm can be used completely independently of traditional reaction wheels, thrusters, or gravity
gradient systems, greatly increasing capabilities of resource-constrained small satellites.

The paper proceeds as follows: the next section introduces the magnetic field model and as-
sumptions used in our approach. The Controllability section then develops a method for estimating
maneuver duration. Then, the orbit and attitude dynamics models used for both simulation and
trajectory optimization are presented. The Trajectory Optimization section details the trajectory
optimization problem formulation and provides a procedure to efficiently handle quaternion dif-
ferentiation. The LQR Tracking Controller section presents a method used to track the trajectory
online with special consideration for the quaternion part of the state vector. The Simulations section
illustrates the utility of the method on different satellite sizes and orbits. Additionally, a comparison
to previous work is given. Finally, we outline our conclusions.

MAGNETIC FIELD MODEL

Unlike the low-order periodic assumptions required for the periodic LQR methods of Psiaki et.
al.,7 we use a high-fidelity magnetic field model. Although it is computationally expensive to in-
corporate a more accurate magnetic field, the greater variation in field direction facilitates improved
control authority over shorter time scales, especially in equatorial or near-equatorial orbits.

A spherical harmonic expansion of degree and order three is used to model the magnetic field
(Figure 1), with coefficients specified by the 12th generation International Geomagnetic Reference
Field? (IGRF):

B(r, θ, φ, t) = −∇V (r, θ, φ, t), (1)

V (r, θ, φ, t) = a

M∑
n=1

n∑
m=1

(a
r

)n+1
[gmn (t) cos(mφ) + hmn (t) sin(mφ)Pm

n (cos θ))] , (2)

where B is the magnetic field vector and V is the magnetic scalar potential. We found that trun-
cating the IGRF model at this level of accuracy provided computational benefits without imposing
significant inaccuracies on the trajectory optimization results. By using a higher-order model, our
method is able to reach arbitrary orientations even in equatorial orbits where a method using a dipole
model typically fails.

DYNAMICS MODEL

Our method requires the ability to simulate both the orbital and attitude dynamics of the space-
craft. The satellite orbit is propagated using a gravitational field with the J2 oblateness term,

fgrav = − µr
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(
6r3 − 1.5

(
r21 + r22

))
J2r2
||r||7
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(
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))
J2r3
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(
3r3 − 4.5

(
r21 + r22

))
 , (3)

where r is the position of the satellite, µ is the standard gravitational parameter for Earth, and J2 is a
constant used in calculating the disturbance from Earth oblateness. Due to the inherent uncertainty
in the magnetic field model and the short time scales over which attitude maneuvers occur, other
perturbations such as drag, solar radiation pressure, and higher order gravitational terms are not
significant.
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Figure 1. Comparison between 3rd order magnetic field (top) and full IGRF model (bottom).
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The attitude dynamics are modeled using Euler’s equation,

Jω̇ + ω × Jω +B(r)× u = 0, (4)

where J is the spacecraft’s moment of inertia, ω is the angular velocity, B is the local magnetic field
vector, and u is the magnetic moment applied by the torque coils.

We use unit quaternions to parameterize the attitude of the spacecraft, with kinematics given by,

q̇ =
1

2


−q2 −q3 −q4
q1 −q4 q3
q3 q1 −q2
−q3 q2 q1

ω =
1

2
W (q)ω (5)

The standard 4th order Runge-Kutta method is employed to integrate the equations of motion. Grav-
ity gradient torques are assumed to be negligible, but future work might consider those affects as
well as atmospheric drag torques.

CONTROLLABILITY

Magnetic field behavior varies widely depending on the orbital elements of the spacecraft, which
makes determining the length of time required to perform an attitude maneuver difficult. Since
free-final-time or infinite-horizon trajectory optimization problems are computationally expensive
to perform, an alternative method of determining a maneuver length was devised. A necessary
condition for full controllability of the system is that the actuators must be able to produce torques
about all three coordinate axes (in the inertial reference frame) over the course of the trajectory. We
therefore define the following controllability Grammian C,

C(t0, tf ) =

∫ tf

t0

B×(τ)B×(τ) dτ, (6)

where B× is the skew-symmetric matrix associated with the cross product of B:

B× =

 0 −B3 B2

B3 0 −B1

−B2 B1 0

 . (7)

Full three-axis controllability is achieved if C has rank 3. Since the matrix B× always has rank
2, C can only achieve full rank if the magnetic field vector changes direction along the trajectory.
We use the condition number of C, defined as the ratio of its maximum and minimum singular
values, as a qualitative metric of its invertability. Equation (7) is integrated forward in time until the
condition number reaches a chosen cutoff value. That cutoff time is then used as the fixed final time
for the maneuver in the trajectory optimizer. This heuristic procedure ensures that sufficient time is
allotted for trajectories in near-equatorial orbits, where the magnetic field is slowly varying, while
also allowing shorter maneuver times in higher-inclination orbits.

TRAJECTORY OPTIMIZATION

We formulate the attitude control problem as the following optimization problem,
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minimize
x1:N , u0:N−1

`f (xN ) +

N−1∑
k=0

`k(xk, uk)

subject to xk+1 = f(xk, uk), k = 0, . . . , N − 1,

(8)

where `k and `N are stage and terminal cost functions, xk =

[
ωk

qk

]
is the state vector, uk is the

control input, f(x, u) is the attitude dynamics model defined in the previous section, and k is the
time-step index.

Since the quaternion is a non-minimal attitude representation that always has unit norm, the sim-
ple quadratic cost functions frequently used in optimal control problems are inappropriate. Instead,
a three-parameter error representation is penalized. A 6 × 7 Jacobian matrix, G(q), that maps a
quaternion to this three-parameter representation is used to define the following cost function:

`f (xN ) =
1

2
xTNG

T (qd)QNG(qd)xN (9)

`k(xk, uk) =
1

2
xTkG

T (qc)QG(qc)xk +
1

2
uTkRuk, (10)

where qd is the desired final attitude quaternion and G(q) is defined as follows:

G(q) =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 −q2 q1 q4 −q3
0 0 0 −q3 −q4 q1 q2
0 0 0 −q4 q3 −q2 q1

 . (11)

We solve problem (8) using the ALTRO solver,9 which is based on iterative LQR with an aug-
mented Lagrangian method for handling constraints. ALTRO is fast and has modest computing
requirements, making it suitable for embedded implementation onboard small satellites. Note, also,
that all evaluations of the magnetic field and associated Jacobian matrices can be pre-computed,
as they are only functions of the satellite orbit, and do not need to be re-calculated as part of the
trajectory optimization solution process.

LQR TRACKING CONTROLLER

After optimizing a nominal state and input trajectory, a time-varying LQR (TVLQR) feedback
controller? is used to track the nominal trajectory online. Special consideration must be made for
the quaternion in the state vector. First, the dynamics listed in equations (4)–(5) are linearized:

Ak =
∂f

∂x

∣∣∣∣
xk

Bk =
∂f

∂u

∣∣∣∣
xk

. (12)

As with the cost functions in the iterative LQR solver, a coordinate transformation must be applied
to the linearized dynamics to convert the quaternions to a three-parameter error representations
using the G(q) Jacobian matrix:

Ãk = G(qk)AkG(qk)T B̃k = G(qk)Bk. (13)
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The standard algebraic Ricatti equation is used to calculate a time-varying LQR tracking con-
troller:

SN = QN (14)

Kk = (R+ B̃T
k Sk+1B̃k)−1B̃T

k Sk+1Ãk (15)

Sk = Q+KT
k RKk + (Ãk − B̃kKk)−1Sk+1(Ãk − B̃kKk). (16)

The control law is then,
uk = ūk −Kkδxk, (17)

where ūk is the nominal control input generated by the trajectory optimizer and the state tracking
error is,

δxk =

[
ωk − ω̄k

2φ

]
, (18)

where ω̄k is the nominal angular velocity from the optimized trajectory and φ is the three-parameter
attitude tracking error represented as Modified Rodrigues parameters,10

φ =
e2:4

1 + e1
, (19)

where e1 and e2:4 are the scalar and vector parts of the quaternion error:[
e1
e2:4

]
=

[
q̄1q1 + q̄T2:4q2:4

q̄1q2:4 − q1q̄2:4 − q̄2:4 × q2:4

]
. (20)

SIMULATIONS

Two different satellites were considered in the simulation: 1U and 3U CubeSats. Both satellites
were tasked to slew 180◦ as an example attitude maneuver. In all simulations, the satellites were
initialized with zero angular velocity. Zero-mean Gaussian noise was applied to the state and the
magnetic field as detailed in Table 1.

Table 1. Satellite Noise Statistics
Sensor Variance

Rotation Rate (deg s−1) 0.38
Attitude (deg) 1.0

Magnetometer (T) 1.0e-5

CubeSat Properties

The satellite properties for both the 1U and 3U cases are tabulated below. Both satellites were
assumed to have uniform mass distribution and products of inertia equal to zero.

Table 2. 1U CubeSat Properties
Property Value

Mass (kg) 0.75
Jxx = Jyy = Jzz (kg m2) 0.00125

Maximum Magnetic Moment (A m2) 0.19
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Table 3. 3U CubeSat Properties
Property Value

Mass (kg) 3.5
Jxx (kg m2) 0.005256

Jyy = Jzz (kg m2) 0.04939
Maximum Magnetic Moment (x) (A m2) 0.19

Maximum Magnetic Moment (y = z) (A m2) 0.57

1U Pointing

In order to validate the performance of the magnetorquer-only control system, 180◦ slews were
demonstrated on a 1U CubeSat. The CubeSat in this simulation was initialized in an ISS orbit
beginning at the ascending node. The attitude, rotation rate, and control input of this maneuver are
shown in Figure 2.

3U Pointing

The ability of the control system to slew a comparatively larger 3U CubeSat was also demon-
strated. Again, this case was initialized in an ISS orbit beginning at the ascending node. Importantly,
the CubeSat was rotated about its major axis of inertia, maximizing the amount of time needed to
slew. Again, the attitude, rotation rate, and control input of this maneuver are shown in Figure 3.

1U Monte Carlo

Since the performance of the controller is highly dependent on the changing magnetic field, cor-
ner cases are a significant concern. To ensure that there were no orbits in which the trajectory
optimization method failed, 100 different circular orbits with altitudes of 400 km were tested in
three different common CubeSat inclinations, polar, sun-synchronous, and ISS (51.5◦). The right
ascension and mean anomaly of the starting position were all randomized.

Figures 4, 5, and 6 show histograms of the 100 simulations for each orbit. The runs with the
longest slew times were compared against their magnetic fields, and a general correlation was found
between slew time and magnetic field variation. The more that the magnetic field vector changed
over the course of the simulation, the faster the satellite was able to slew its attitude, as expected.
Most importantly, the algorithm exhibited no failure cases and took at most a few minutes to execute
the desired slew.

Comparison

We compared our algorithm against the previously formulated "No Wheel" control.7, 11 The "No
Wheel" control system was derived by examining the required torque to slew the satellite to the
desired state. This torque was then converted into a feasible magnetic moment through a cross
product manipulation with the measured magnetic field,

Trequired = −(C1ω̄ + C1J
−1q̄), (21)

mfeasible =
Bmeasured × Trequired
|Bmeasured|2

, (22)

where Bmeasured is the measured magnetic field vector in the body frame, ω̄ is the rotation rate of
the body frame axes with respect to the trajectory frame, q̄ is the vector component of the attitude
quaternion between the body frame and the trajectory frame, and C1 and C2 are chosen constants.
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Figure 2. 1U Simulation Results
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Figure 3. 3U Simulation Results
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Figure 4. Polar Monte-Carlo Simulation

Figure 5. SSO Orbit Monte-Carlo Simulation
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Figure 6. ISS Orbit Monte-Carlo Simulation

The "No-Wheel" control law was simulated in randomly selected orbits with the same 1U Cube-
Sat parameters described in the previous section. The control law showed reasonable convergence
for small attitude errors of up to 10◦ when the constants could be tailored to the magnetic field
strength along the orbit. Even then, the control system showed significant oscillatory behavior, es-
pecially over satellite orbits where the magnetic field deviated significantly from a dipole model.
For initial errors greater than 10◦, this control method failed to converge in our tests. Addition-
ally, this method results divergence if the satellite has a large initial rotation rate. The results of a
simulation with 90◦ initial error are shown in Figure 8.

The Asymptotic Periodic Linear Quadratic Regulator (APLQR)11 was also tested. In this method,
the satellite dynamics are linearized, and the control law is based on the known magnetic field and
the solution of a time-invariant Riccati equation:

u(t) = −R−1BT (t)Pssx(t) (23)

where u(t) is the control input to the magnetorquers, B(t) is a function of the magnetic field,
x(t) =

[
φ θ ψ ωsc/ll1 ωsc/ll2 ωsc/ll3

]T , and Pss is found through solving Equation (24).

0 = −PssA−ATPss −Q+ Pss(εB̃0)(εB̃0)
TPss (24)

The APLQR control law found using a simplified periodic assumption of the magnetic field was
simulated in the higher-fidelity IGRF model on a satellite with 1U CubeSat parameters. The control
law was found to converge to within 5◦ of the desired attitude from initial errors as high as 30◦ for
orbits with high inclinations, but unstable behavior was encountered in orbits with inclinations less
than 60◦. For lower inclination orbits, the control effectiveness matrix utilized to calculate the Pss

matrix based on the first-order Earth magnetic field is poorly conditioned, rendering stability over
all axes impossible. Additionally, the APLQR controller could not account for initial attitude errors
beyond 30◦.
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Figure 7. Proportional-Derivative Control

Figure 8. Trajectory Optimization Control
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Figure 9. APLQR Comparison

Even in the best case conditions, the trajectory optimization algorithm presented in this paper
significantly outperformed the APLQR control law. APLQR requires many orbits to converge,
while our method is able to converge in minutes, as shown in Figure 9.

CONCLUSIONS

We have proposed a novel attitude control technique for small satellites that uses only magnetic
torque coils and relies on onboard solution of a trajectory optimization problem to produce a nomi-
nal trajectory, which is then tracked with a time-varying LQR controller. The control technique was
simulated on both 1U and 3U CubeSats in many different orbits, demonstrating its effectiveness
under a wide range of conditions.

Magnetorquer-only control, though underactuated, provides significant promise for small satel-
lites. Torque coils scale favorably in terms of size, mass, and power, and magnetorquer-based
control also eliminates the jitter associated with reaction wheels. By considering higher order mag-
netic fields rather than a simplified dipole models, magnetic-field-based control is more effective
due to significant local changes in the magnetic field vector. While our method has significant com-
putational overhead, it is well within the capabilities of the modern microcontrollers currently being
flown onboard CubeSats.

ACKNOWLEDGEMENTS

The authors would like to thank Brian Jackson and Taylor Howell for assistance with the ALTRO
trajectory optimization software.

NOMENCLATURE

ω Angular Velocity

ρ Density
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τ Torque

τmag Torque from Magnetic Interaction

B Magnetic Field

f Acceleration

m Magnetic Moment

v Velocity

M Specific Gravitational Parameter

h Height

I Current

J Moment of Inertia

q Quaternion

r Radius
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