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Fig. 1: The hydraulic humanoid Nadia walking forward over multiple steps using our convex MPC formulation with linear
time-invariant dynamics constraints. The gait has a stride length of 30 cm, a swing phase of 0.6 s and a double support

phase of 0.3 s.

Abstract— When do locomotion controllers require reasoning
about nonlinearities? In this work, we show that a whole-
body model-predictive controller using a simple linear time-
invariant approximation of the whole-body dynamics is able to
execute basic locomotion tasks on complex legged robots. The
formulation requires no online nonlinear dynamics evaluations
or matrix inversions. We demonstrate walking, disturbance
rejection, and even navigation to a goal position without a
separate footstep planner on a quadrupedal robot. In addition,
we demonstrate dynamic walking on a hydraulic humanoid, a
robot with significant limb inertia, complex actuator dynamics,
and large sim-to-real gap.

I. INTRODUCTION

Legged locomotion is a key capability for robots navigat-
ing human spaces. These robots are usually underactuated
and have non-smooth and nonlinear dynamics, posing a
challenging planning and control problem that has been
the focus of significant work over the last several decades.
Recent methods have achieved impressive results by reason-
ing about the full nonlinear dynamics of the robot and the
corresponding non-convex optimal control problem, either
online using nonlinear model-predictive control (NMPC) or
offline using learning-based methods such as reinforcement
learning (RL). However, these methods are computationally
expensive, difficult to tune, and hard to analyze, leading to an
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open question: what level of reasoning about these complex
nonlinear dynamics is required for locomotion? In this paper
we demonstrate that basic locomotion tasks are achievable
using a single time-invariant linear dynamics model and
convex model-predictive control (MPC).

Some of the earliest legged locomotion work hinted that
these challenging systems have significant underlying struc-
ture. By leveraging simple models such as the spring-loaded
inverted pendulum (SLIP) [I]] along with the zero-moment
point [2][3]] and support polygon, researchers were able to
construct some of the first successful locomotion controllers
for walking and running. These approaches resulted in simple
and often closed-form control laws that lent themselves to
analysis of their stability and robustness properties [4][5][6],
and yielded surprising results, such as a blind open-loop con-
troller for stable running over rough terrain [[7]. While critical
to developing our understanding of locomotion fundamen-
tals, these methods have been challenging to generalize, and
have limited ability to reason about leg inertias, constraints,
and disturbances.

To address these limitations, researchers have turned to
optimization-based methods. One widely used approach is
MPC, which formulates and solves a receding-horizon op-
timal control problem given dynamics, constraints, and a
cost function. These problems have classically been solved
using second-order (e.g. Newton-type) methods, [§][9][10]
though more recently sampling-based methods have also
achieved promising results. MPC approaches have demon-


https://arxiv.org/abs/2509.17884v1

strated agile and robust behaviors, perhaps most famously
demonstrated by Boston Dynamics [[12][13]. However, a
primary challenge of MPC approaches has been solving large
optimization problems fast enough online.

A common approach to solve MPC problems online
is sequential quadratic programming (SQP). In SQP, the
dynamics and constraints are linearized along the previous
solution iterate and a quadratic approximation of the cost
function is used to form a quadratic program (QP) [[14]]. The
solution to this subproblem is then used to compute a new
iterate. Computing a solution to these QPs involves solving
a potentially large linear system, which is computationally
expensive and challenging to parallelize [[15][16]. In addition,
while each subproblem may be convex, the general nonlinear
MPC problem is often non-convex, with no convergence
guarantees. Significant domain knowledge and systems engi-
neering is required to achieve good performance in practice
[17].

Given that constructing and solving a QP at each iteration
is a significant bottleneck, a natural question to ask is: how
much information can we leverage from each subproblem?
For example, when running MPC online, the subproblems of-
ten don’t change significantly between solves if the dynamics
are much slower than the control rate. The resulting QP also
has an equivalent closed-form linear feedback policy if the
active constraint set doesn’t change. Some nonlinear MPC
approaches have leveraged these facts to reduce the effect of
solver delay [18][19]. In addition, many works have shown
the power of LQR controllers [20] and linearized dynamics
models for complex problems like airplane perching [21].
Beyond just the QP setting, linear feedback policies have
been shown to be surprisingly capable. For example, [22]
[23]] showed that learned linear policies can stabilize gait
generators for walking on rough terrain.

In this work, we explore the efficacy of linear models
by probing the capability of an MPC controller using a
single time-invariant linearized whole-body dynamics model
of a legged robot. We hypothesize that this convex MPC
formulation is sufficient for many practical locomotion tasks
that do not require extreme joint angles or body orientations.
Our formulation is:

« Convex, yielding a unique solution in polynomial time;

« Linear, with no online nonlinear dynamics or kinemat-

ics evaluations;

o Matrix-inverse-free, requiring only matrix-vector prod-

ucts and clamp operations online.

First, we demonstrate our controller on a range of tasks on
a Unitree Go2 quadruped, showing that it is able to recover
from perturbations and walk to a goal position with up to
90 degrees of yaw error when given only a walking-in-place
reference with no additional higher-level planner. We also
test stepping onto a 24 cm box and show the controller is
able to handle the change in pitch and foot height.

Second, we demonstrate our controller on a hydraulic
humanoid, a more challenging system due to reduced control
authority, patch contacts, large leg inertias, and a significant
sim-to-real gap. We show that it can stably walk in-place

and is able to walk forward with a speed of 0.17 m/s and
a stride length of 0.3 m, with a swing phase of 0.6 s and a
double support phase of 0.3 s, which cannot be performed
quasi-statically.

II. BACKGROUND
A. Dynamics Model

We model each legged robot using a floating base, where
the configuration ¢ consists of the base position in world
coordinates, a body-to-world quaternion, and the joint angles.
The velocity vector v consists of the linear and angular
velocities of the base in the body frame and the joint
velocities. We can relate ¢ to v using the following velocity
kinematics, where E(q) contains the attitude Jacobian for
the quaternion [24].

q=E(q)v. (1)

The continuous-time manipulator equations for a robot with
external forces is

M(q)v + C(gq,v) = Br+ J(q)" A, 2)

where M(q) is the mass matrix, C(q,v) is the dynamics
bias, B is the input Jacobian mapping actuator torques to
generalized forces and 7 are motor torques. A € R3Ve is
a vector of contact forces in the world frame (x,y, z) for
each contact point where NN, is the number of contact points,
and J(q) is a Jacobian that maps the external contact forces
to generalized forces, which is described in more detail in
Section These dynamics are put in state-space form
and discretized using an integrator such as backward Euler
or Runge-Kutta.

B. Contact Modeling

Contact dynamics are classically modeled as comple-
mentarity constraints, which encode that either the distance
between the objects in contact or the contact force is zero.
Adding that both the distance and contact force must be non-
negative results in the following three constraints.

#(q) >0, €)]
n >0, 4)
¢(g)n =0, )

where ¢(q) is the signed distance as a function of configu-
ration and n is the normal force.

Solving the general set of constraints above results in a
problem that is non-convex and can be ill-conditioned or have
singular Jacobians. Instead, we adopt the hybrid approach
to model these constraints in our MPC problem: We pre-
specify whether objects are in contact or not (referred to as
the contact mode) at each time step. We can then encode
contact directly through equality and inequality constraints:

#(q) >0, n=0 (no contact)
or
#(q) =0, n>0 (contact)



By dropping the complementarity constraints and fixing the
contact modes, we can convexify the constraints. However,
the controller can no longer plan over the ordering of contact
events.

C. Trajectory Optimization and Nonlinear MPC

Trajectory optimization and nonlinear MPC problems can
be formulated as:

N-1
e in ;fk(wmuk) + Ly (2n) (6)
s.t. T1 = Tic
f(xr,up,xp41) =0 Vkel,...,N—1
i € X,up €U Vkel,...,N—1
In this problem xp = [qx;vg] is the state at time k, uy is

the control, ¢, is the stage cost, £ is the terminal cost, f
is a discrete dynamics constraint, and X and U are sets
representing general state and control constraints. These
problems are typically nonlinear and nonconvex, with no
guarantee of finding a globally optimal solution.

III. CONTROLLER FORMULATION

In this section, we describe the specific dynamics, con-
straints, and costs of our linear time-invariant MPC formu-
lation, which results in a quadratic program that is solved
online.

A. Low-Level Control

Many robots, including the Unitree Go2, include low-
level PD controllers in their motors that operate with much
lower latency than is possible through higher-level torque-
control interfaces. While our methodology is capable of
fast whole-body torque control, we find that the additional
latency introduced by the Go2 torque-control interface limits
performance. Therefore, we modify the dynamics () to
include these low-level PD controller dynamics,

Mo+ C+ Kpq+ Kqg = Br, @)
7 =755 + BT (Kpqa + Kada),

where K, and K are diagonal gain matrices and 77 is a
feed-forward torque command.

N—-1
min
T1UNLULN—1,A1:N -1 P

S.t. T1 = Tj.c.
AT 21 + Az + Buy, = dj,
le < Jzps1 < he

].f S Uk S hf

Z% (e — 20) T Q(zr — 1) + (wp — @) Ry — )] + %(CEN — i) Qs (zn — in)

B. Dynamics Linearization

When linearizing the floating-base state, we use an axis-
angle rotation parameterization and define the state error
Ax = e(z,z0), where we use quaternion operations to
compute the attitude error and vector subtraction otherwise.
We combine Eq. [I] and Eq. [2] into a continuous-time state-
space model and linearize them about xy,ug, A\g and then
apply backward-Euler integration to construct the following
affine linear dynamics model.

A+Al‘k+1 + AAzy, + BAug, = dj, (8)
where Auk = [AT}c; A)\k]

A problem we leave to future work is the best choice of
linearization point. Intuitively, we desire one that minimizes
the prediction error over the operating space of interest. For
our locomotion tasks, we chose to use a standing pose and
the corresponding controls and contact forces for x¢, ug, and
Ao-

C. Locomotion Contact Constraints

Given a single contact point, let ¢(q) : R™ — R3 map
the configuration of the robot to the world coordinates of the
contact point and let J(q) = g—;. Our constraint restricts the
x and y positions at adjacent knot points to be equal when
in contact, letting the MPC controller choose where to place
the contact. Assuming that the world frame has the contact
height at z = 0, we have the following constraint for each
contact point.

c(qrr1) —diag([1 1 0])c(gr) =0 9
The resulting linearized constraint is then as follows.

JAGry1 — diag([1 1 0])JAg, =0. (10)

‘When not in contact, the constraint bounds are set to a lower
bound of (—o0, —00,0) and an upper bound of (0o, 0o, 0).

D. Reference Tracking

We provide whole-body gait references of the state, con-
trol, and contact forces for the controller to track, which we
represent as & and 4. Since we have a single linearization
point, the MPC dynamics plan over Az = e(z,zo) and
Au = u—ug. Similarly, we define the reference with respect
to the linearization point as AZ and Ad. For the rest of this
section we’ll drop the A for brevity and assume x, u, & and
4 are with respect to xo and ug.

Y

(initial state)
(dynamics)
(contact mode constraints)

(force and torque constraints)



Fig. 2: Top-down view of two perturbations applied to the
Unitree Go2 while stepping in place. The robot maintains
contact with the ground without slipping and return to its
original location.

E. Linear Time-Invariant MPC

The final formulation for the linear time-invariant MPC
controller is shown in (TT)). It consists of a quadratic tracking
cost, an initial condition constraint, and three constraints
at each time step: a dynamics constraint, a contact mode
constraint, and a friction-cone force constraint. This problem
is a quadratic program and can be written in the following
general form,

1
minizTHz—l—gTz (12)

s.t.1 < Dz < h, (13)

since the constraint Jacobian D and cost Hessian H are
fixed. This formulation allows certain QP solvers, such as
ReLU-QP and OSQP, to pre-factorize or pre-invert the KKT
system offline (which is a O(n3) operation) and then perform
only back-substitutions or matrix-vector products online to
solve the QP (which are O(n?) operations). The reference
and contact modes can be changed by only modifying the
cost gradient g and/or constraint bounds ! and h, which are
shown in dark red in (TI).

IV. EXPERIMENTS

We tested our MPC formulation on two systems: a
quadruped and a humanoid. Feasible reference motions were
planned offline using dynamics from Pinocchio and the
trajectory optimization library Aligator [25]], and the QP was
solved online using OSQP [26]. Videos and code can be
found on our project website 1inearwalking.github.
iol
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Fig. 3: A Unitree Go2 robot starts from 10 initial conditions
with yaw from 5 to 90° and displacements from 0.1 to 1.7 m.
Transparent overlays show keyframes starting with 90° yaw
and 1.3 m displacement. Our controller is able to return to
the initial position without assistance from a footstep planner.

A. Quadruped Experiments

For our quadruped experiments, we used the Unitree Go2,
which has 12 joints (three per leg). It is relatively lightweight,
with a total mass of 15.7 kg. While each leg weighs about 2
kg, the mass is centered near the hip, resulting in low angular
inertias. We modeled each foot as a single contact point and
used constraints on both position and velocity, resulting in
24 constraints and 24 contact forces. The resulting linearized
dynamics model has 36 states, 12 actuator torques, and 24
contact forces.

We used a planning horizon of 0.2 seconds with a timestep
of 0.01 seconds. The closed-loop control rate was approx-
imately 500 Hz. Experiments were run on a workstation
computer equipped with an Intel i9-12900KS CPU and 64
GB of RAM. We performed three experiments: disturbance
rejection, goal navigation, and stepping onto a box. For the
first two, we used a walking-in-place reference generated
with Aligator. No additional online high-level planner or
contact heuristics were used during the experiments — all
behaviors came purely from the MPC controller.

1) Disturbance Rejection: We tested disturbance rejection
by pushing the robot from the front and side while it stepped
in place. Fig. [2| shows selected frames from the experiments
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Fig. 4: Keyframes of a Unitree Go2 robot stepping onto
a 24 cm box. The robot tracks a trajectory with up to
60 degrees joint deviation and 10 degrees pitch deviation
from the linearization pose, with the green dashed skeleton
showing the linearization pose.

demonstrating that the controller is capable of recovering
from moderate pushes and exhibits footstep recovery be-
haviors despite relying on a single linearization. However,
we found that large or sustained perturbations resulted in
the controller failing due to an infeasible QP where the
contact constraints were not satisfiable. This problem could
be alleviated with a footstep planner.

2) Goal Navigation: Using an open-loop walking-in-
place reference, we demonstrate that the linear controller is
able to plan footsteps to navigate to a goal position despite
large changes in orientation. The top of Fig. [3] shows the
quadruped starting away from the origin with a yaw error of
90 degrees and walking to the origin over 18 seconds, driving
the body position and orientation errors to zero. To further
validate our controller, we initialized the quadruped from 10
different poses that span yaw errors from five to 90 degrees
and 0.1 m to 1.7 m body displacements from the linearization
pose. The bottom of Fig. [F]illustrates the convergence of both
the position and orientation errors to zero across all trials,
where the dash-dot trajectories correspond with the frames
shown in the top figure.

3) Stepping onto a Box: We demonstrate that the con-
troller is able to handle large changes in pitch and footstep
height. Fig. [] shows four keyframes from the robot stepping
onto a box with a height of 24 cm, resulting in maximum
deviations of 10 degrees in the body pitch, 11 degrees in
the hip joints, 29 degrees in the thigh joints, and 60 degrees
in the calf joints from the linearization pose. Handling a
different contact height is simple, and involves updating the
contact constraint from J,Axz =0 to J, Az = J,AZ where
Z is the reference.

B. Hydraulic Humanoid

To further test our method, we performed a set of walking
experiments on IHMC’s Nadia, a hydraulic humanoid. This
problem is more challenging for several reasons: Unlike the
quadruped, Nadia has hydraulic linear actuators that drive

the leg joints through linkage mechanisms. Each joint is
approximated as a revolute joint with torque actuators and
converted to hydraulic forces by a low-level control stack.
While this approximation is exact for most joints, the knee
has a four-bar linkage where the revolute joint approximation
is inaccurate. Each leg weighs 21 kg, approximately 23% of
the total mass, and has the center of mass close to the knee.
In addition, the feet form patch contacts with the ground and
the support polygon and capture regions are much smaller
121131

We model each foot with four contact points at its corners.
This makes the normal force constraint linear, but the forces
are no longer unique and the contact Jacobians are rank
deficient. We resolve this issue by adding a small regularizer
(10~°) to the contact forces constraints.

For our MPC problem, we chose to focus on control of the
lower body, since we had limited access to the hardware. This
leaves 12 revolute joints, six for each leg, and one yaw joint
at the spine. The resulting linearized dynamics model has 38
states, 13 actuator torques, and 24 contact forces. We planned
over a 0.2 second horizon with a timestep of 0.01 seconds,
and ran 20 QP iterations for each solve. The closed loop
control rate was approximately 333 Hz, which was based off
the frequency that the robot’s built-in control stack runs at.
Experiments were run on a workstation computer equipped
with an Intel i7-13700KF CPU.

To approximately quantify the speed gain achieved by
using a fixed Hessian and constraint Jacobian and avoiding
matrix factorizations online, we measured the factorization
and backsolve timing for QDLDL, OSQP’s linear system
solver, on Nadia’s KKT system which is a 3,504 x 3,504
matrix that is 99.3% sparse. QDLDL takes 5.9 &+ 0.8ms to
factorize the KKT system but only 0.1040.02ms to perform
a back-solve. This enables our single convex MPC controller
to run significantly faster than an NMPC approach, which
would additionally need to evaluate nonlinear dynamics,
compute Jacobians, and possibly employ additional steps
such as a line-search or outer penalty loops.

We demonstrate our MPC controller on hardware for three
different reference motions: walking in-place, and walking
forward with short (17 cm) and long (30 cm) stride lengths.
The parameters for each reference are shown in Table ] We
found the robot was able to stably walk in place, walking
for over a minute with no noticeable instabilities. We also
ran six trials for both forward walking references consisting
of eight steps each with no failures. Figure [T] shows each
step from one of the trials on hardware. Figure [5] shows
the foot locations and center of mass trajectories in the XY
plane for all 6 runs with a stride length of 30 cm, with the
reference foot locations and center of mass trajectory shown
with dashed lines. The reference trajectory is not quasi-static,
as shown by the center of mass staying out of the support
polygon of the stance foot for each step. The maximum final
tracking error for the center of mass across all six runs was
3.6 cm.
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Fig. 5: Foot and center-of-mass trajectories across six humanoid walking trials (black) over the desired foot placement
positions and center of mass trajectory (blue, dashed). Our controller is able to track the trajectory with minor deviations

despite large modeling errors.

Reference Stride  Single Support  Double Support

In-place NA 0.8s 0.6s
Forward short 17 cm 0.8s 0.6s
Forward long 30 cm 0.6s 03s

TABLE I: Gait parameters for the three humanoid walking
behaviors demonstrated on hardware.

V. DISCUSSION AND CONCLUSIONS

We have presented a linear time-invariant MPC controller
that is convex and avoids both online nonlinear dynamics
evaluations and costly matrix factorizations. We demon-
strated the resulting controller on a variety of quadruped
tasks to show its ability to handle orientation deviations and
reason about foot placement. In addition, we showed that our
controller can perform walking on a hydraulic humanoid with
large leg inertias and complex kinematics.

A. Limitations

We have focused on a simple formulation — avoiding
a higher-level planner and nonlinear evaluations — to iso-
late the capabilities of our single-linearization formulation.
Howeyver, this does result in some clear limitations: Without
contact re-planning, large disturbances can lead to infeasible
QPs and controller failure, which we observed during large-
perturbation experiments. We also found that during bipedal
walking the controller struggled to keep the robot’s feet flat.
In addition, the cost Hessian is also fixed in our approach,
preventing task-specific cost tuning, for example for swing-
leg tracking.

B. Future Work

There are many potential directions for future work: First,
some of the issues noted above could be addressed with a
learned or heuristic-based planner that could update contact
modes, preventing infeasible QPs. Second, thanks to its
low computational cost, our controller could be embedded
directly into the training pipeline of an RL policy reasoning
about constraints. Third, some nonlinear dynamics evalua-
tions could also be incorporated to increase performance
with very minimal additional computational cost. Lastly,

switching between multiple linear models online could en-
able highly dynamic motions with very large joint-angle or
body attitude deviations.
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