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FAST SOLUTION OF OPTIMAL CONTROL PROBLEMS WITH L1
COST

Simon Le Cleac’h∗, Zachary Manchester †

We propose a fast algorithm for solving optimal control problems with L1 control
cost. Convergence to the global optimum is guaranteed for systems with linear
dynamics, and the algorithm can also be used to find local optima for nonlinear
dynamical systems. Our approach relies on the alternating direction method of
multipliers (ADMM) and uses a fast trajectory optimization solver based on iter-
ative LQR. The low computational complexity coupled with the fast execution of
this algorithm make it suitable for implementation in flight software.

INTRODUCTION

Classical optimal control theory stands on solid analytical foundations, foremost among which
is the Pontryagin minimum principle.1 This principle assumes continuity of the cost function and
differentiability properties about the system’s dynamics. However, dealing with non-differentiable
cost functions has proven difficult as the ability to differentiate with respect to the control input
facilitates the theoretical and numerical analysis of the problem.

Optimal control problems with L1 cost belong to this category of difficult problems because of
the nondifferentiabilty of the L1-norm. Yet there is a great interest in these problems as the L1-norm
is sometimes more representative of the true cost than typical quadratic cost functions. For instance,
L1-norm problems naturally arise from minimum-time2 or minimum-fuel3 problems. This type of
optimal control problem, therefore, has a broad range of applications in astrodynamics.

Vossen4 proposed regularization and augmentation techniques to solve L1-norm problems in a
restricted setting. Indeed, the proposed methods assume that the control command appears linearly
in the dynamics. Bako2 derived a numerical approach for minimum-time problems with linear time-
variant dynamics by formulating the problem using an L1 cost on the control inputs and solving it
numerically with CVX, a general-purpose solver for convex optimization problems.5 This approach,
however, neither fully exploits the sparse nature of optimal control problems, nor can it handle
control problems with nonlinear dynamics.

In contrast, we derive a dedicated algorithm based on the alternating-direction method of multi-
pliers (ADMM)6 that also generalizes to non-linear dynamics. Moreover, it relies on a fast, robust
solver with low-memory footprint.7 These properties make possible an implementation of the solver
on an embedded system. The algorithm proposed here is suitable for onboard real-time implemen-
tation in flight software for applications such as spacecraft formation flying.8
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The paper proceeds as follows: the next section introduces the formulation of the L1 cost problem
and provides an iterative solution technique. Then, the third section generalizes the iterative solution
to problems with nonlinear dynamics. The fourth and fifth sections demonstrate a detailed appli-
cation of the proposed algorithm to a spacecraft rendezvous problem and discusses the algorithm’s
performance. Finally, concluding remarks are outlined in the sixth section.

PROBLEM FORMULATION AND ITERATIVE SOLUTION

Our objective is to control a linear time-variant dynamical system with state x and control u, and
with fixed initial state x0. We define a cost function with quadratic stage costs lk and quadratic final
cost lf applied to the state, and an L1 cost on the control u:

minimize
x1:N , u0:N−1

J(x0:N , u0:N−1) = lf (xN ) +
N−1∑
k=0

lk(xk) + α||uk||1,

subject to xk+1 = Akxk +Bkuk, k = 0, . . . , N − 1,

lf (xN ) =
1

2
xTNQNxN + xTNqf + cf ,

lk(xk) =
1

2
xTkQxk + xTk q + c.

(1)

To solve this constrained optimization problem, we rely on the alternating direction method of
multipliers (ADMM).6 We introduce dummy variables yk to replace the controls uk in the cost
function and formulate an equivalent problem by adding equality constraints:

minimize
x1:N , y0:N−1

J(x0:N , y0:N−1) = lf (xN ) +

N−1∑
k=0

lk(xk) + α||yk||1,

subject to xk+1 = Akxk +Bkuk, k = 0, . . . , N − 1,

uk = yk, k = 0, . . . , N − 1.

(2)

We also introduce the following shorthand notation for readability purposes,

X = x0:N , (3)

U = u0:N−1, (4)

Y = y0:N−1, (5)

Λ = λ0:N−1. (6)

Following ADMM, we use an augmented Lagrangian method. We add to the Lagrangian a
quadratic penalty function that penalizes violation of the equality constraints in Problem 2,

Lρ(X,U, Y,Λ) = J(X,Y ) +

N−1∑
k=0

λTk (uk − yk) +
ρ

2
||uk − yk||22, (7)

where ρ is a penalty weight and λ is a Lagrange multiplier. The Lagrange multiplier and penalty
term associated with the dynamics constraints in Problem 2 are omitted here, as they are implicitly
enforced in the LQR algorithm used to solve for X and U . The ADMM algorithm solves Problem
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2 iteratively. Each iteration decomposes into three sequential steps. In the following sections, the
superscript i on variables x, u, y, and λ indicates the iteration step of the ADMM algorithm,

Xi+1, U i+1 = argminX,ULρ(X,U, Y iΛi), (8)

Y i+1 = argminY Lρ(Xi+1, U i+1, Y,Λi), (9)

λi+1
k = λik + ρ(ui+1

k − yi+1
k ), k = 0, . . . , N − 1. (10)

The first step, defined by Equation (8), is equivalent to solving a linear quadratic regulator (LQR)
problem, which has a closed-form solution. The second step, Equation (9), is a soft-threshold op-
eration, which can also be computed in closed-form (see Equation (24)). Finally the third step is a
Lagrange multiplier update. It is important to note that all these steps are fast to compute. The pro-
cedure used to solve the optimization problem is formally described in Algorithm 1. The procedure
requires as input; the initial state of the system x0, an initial guess for the control trajectory Uinitial,
a penalty weight ρ and a termination threshold ε. Once the termination threshold is reached, the
procedure returns control and state trajectories minimizing the L1 cost function.

Algorithm 1 L1 Cost Optimizer
1: procedure L1COSTOPTIMIZER(x0, Uinitial; ρ, ε)
2: X ← DYNAMICSROLLOUT(x0, Uinitial)
3: Y,Λ← 0, 0
4: repeat
5: X,U ← OPTIMALCONTROLUPDATE(Y,Λ; ρ)
6: Y ← SOFTTHRESHOLDUPDATE(X,U,Λ, ρ)
7: Λ← Λ + ρ (U − Y )
8: until ||U − Y ||2 < ε
9: return X,U

10: end procedure
11: function OPTIMALCONTROLUPDATE(Y,Λ; ρ)
12: X,U ← Solution to LQR Problem 11
13: return X,U
14: end function
15: function SOFTTHRESHOLDUPDATE(X,U,Λ; ρ)
16: Y ← L1 projection operation using Equations (23) and (24)
17: return Y
18: end function

Optimal Control Update

The first step consists of minimizing the augmented Lagrangian with respect to the trajectories
in the state and control spaces. This is equivalent to solving the linear quadratic regulator problem.
Indeed the L1 cost term is constant since the set of variables Y i is fixed for this optimization step,

minimize
X,U

Lρ(X,U, Y i,Λi),

subject to xk+1 = Akxk +Bkuk, k = 0, . . . , N − 1.
(11)
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This LQR problem has a closed-form solution in terms of the dynamic Riccati equation, which we
summarize here for convenience:

uk = −Kkxk − bk, (12)

Kk = D−1k Ck, (13)

ak = qk +ATk gk+1, (14)

bk = (λik + ρyik) +BT
k gk+1, (15)

Ck = BT
k Hk+1Ak, (16)

Dk = ρ+BT
k Hk+1Bk, (17)

Hk = Qk +KT
k DkKk −KT

k Ck − CTk Kk, (18)

HN = QN , (19)

gk = qk + ak + (KT
k Dk − CTk )bk −KT

k bk, (20)

gN = qN . (21)

For a detailed derivation of the set of Equations (12) - (21), we refer the reader to works of Li9 and
Manchester.10

Soft Threshold Update

As a second step, we minimize the augmented Lagrangian with respect to y0:N−1 using the state
and control trajectories obtained from Problem 11:

Y i+1 = argminY

{
Lρ(Xi+1, U i+1, Y,Λi)

}
. (22)

This optimization can be performed separately for each yk since the augmented Lagrangian func-
tion is separable across these variables. Furthermore, the fact that the L1-norm is separable across
dimensions allows us to minimize separately on each dimension of yk. This minimization problem
has a closed-form solution in terms of the soft-thresholding operator, Sτ :6

yi+1
k = Sα/ρ

(
ui+1
k +

λik
ρ

)
, (23)

Sτ (s) =


s− τ s > τ

0 |s| ≤ τ
s+ τ s < −τ.

(24)

Lagrange Multiplier Update

The last step is the Lagrange multiplier update, and is defined as follows:

λi+1
k = λik + ρ(ui+1

k − yi+1
k ). (25)

Equation (25) can be interpreted as shifting the value of the penalty term into the Lagrange multiplier
term.
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GENERALIZATION TO NONLINEAR DYNAMICS

The method presented in the previous section can be generalized to control problems with non-
linear dynamics and constraints on the state and inputs. To include these generalizations we adapt
the optimal control update. We add the constraints on the state and control as well as the non-
linear dynamics constraint to the optimal control update. The LQR problem is therefore replaced
by an optimal control problem with state and control constraints and non-linear dynamics defined
as follows:

minimize
X,U

Lρ(X,U, Y i,Λi),

subject to xk+1 = f(xk, uk), k = 0, . . . , N − 1,

x ≤ xk ≤ x, k = 1, . . . , N,

u ≤ uk ≤ u, k = 0, . . . , N − 1.

(26)

We observe that the Problem 26 has a differentiable cost function. Practically, we rely on a fast
trajectory optimization solver (ALTRO)7 to perform this optimal control update. By including these
generalizations, we loose the convexity of the control problem and therefore the algorithm is not
guaranteed to converge to a global optimum. Solving the nonlinear problem is more complex than
a single LQR solution. However, the algorithm reuses the previous control trajectory to warm-start
the optimal control update. The solving time of this step, therefore, remains fast.

ASTRODYNAMICS APPLICATION

In this section, we present solutions obtained using our iterative solver. These solutions illustrate
the performance of the solver on both linear and nonlinear dynamical systems.

Problem Motivation

We apply our solver to the satellite rendezvous problem. Our L1 cost minimization solver is
particularly suited to this type of control problem. Indeed, some satellites rely on reaction control
system (RCS) thrusters for attitude and/or translation control. These RCS thrusters can apply forces
only inside a limited range. Applying a force close to zero or above a given limit is impossible.
The benefit of using L1 cost to penalize thruster use is therefore twofold: first, the L1 cost is a
metric that accurately quantifies fuel-consumption compared to a quadratic cost. Second, the L1
cost encourages sparsity of the control trajectory, which means that during large portions of the
trajectory the applied control will be zero, and when control is applied, its value is saturated at the
maximum possible force. This is similar to an impulsive or bang-off-bang control strategy that is
desirable for RCS thrusters. Control trajectories obtained using a quadratic cost, in contrast, are
typically smooth and non-zero over most of the trajectory, which is far more difficult to implement
on real hardware. An example is provided in Figure 1 for a comparison of the control trajectories
obtained using quadratic and L1 cost.

Model

This section presents our model of the rendezvous problem. In this setting, the objective is to
control a chaser spacecraft so that it approaches a target spacecraft in order to perform a docking
maneuver. We focus on a concrete example: the Pathfinder for Autonomous Navigation (PAN)
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Figure 1. Comparison of the control trajectories obtained using a quadratic control
cost and a L1 control cost. These control trajectories produce state trajectories with
the same initial state and final state.

mission which was selected for NASA’s CubeSat Launch Initiative.11 In this context, both the
chaser and the target spacecraft are in a low Earth orbit with small eccentricity.

Linear Dynamical Model: In order to verify the performance of our solver we apply it first on a
linearized version of the rendezvous problem. We therefore use the Clohessy-Wiltshire equations.12

We refer to the work of Curtis13 for a detailed description of these equations. The state vector, x,
is composed of the position vector p and velocity vector ṗ of the chaser spacecraft expressed in
a frame centered on the target satellite. The control vector, u, is the force vector applied on the
satellite. The linear dynamical model of the rendezvous problem is defined as follows,

x =



p1
p2
p3
ṗ1
ṗ2
ṗ3

 , ẋ =



ṗ1
ṗ2
ṗ3

3n2p1 + 2np2 + u1/m
−2nṗ1 + u2/m

−n2p3 + u3/m

 . (27)

Where n is the mean motion of the target satellite’s orbit.

Nonlinear Dynamical Model: The Clohessy-Wiltshire equations are obtained by linearizing the
dynamics of the 2-satellite system. This linearization makes several assumptions; The target satel-
lite’s orbit must be circular, and the satellites are not subject to atmospheric drag. This set of
assumptions is not respected in our example. We, therefore, also test our algorithm on a dynamical
system that accounts for these nonlinearities. The forces applied to these satellites are as follows,

Fchaser = Fchaserg + Fchaserd + Fchaserc (28)

Ftarget = Ftargetg + Ftargetd , (29)

where Fg is the force due to Earth’s gravitation, Fd is the drag force due to Earth’s atmosphere,
Fc is the control force applied to the chaser satellite. The force due to Earth’s gravitation can be
modeled as follows,

Fg = − µm

||p||32
p, (30)
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Figure 2. Linear dynamics: positions, velocities and unconstrained control trajectories.

where µ is Earth’s standard gravitational parameter,m is the satellite mass, p is the satellite position
in the Earth-centered inertial frame (ECI). The drag force due to Earth’s atmosphere can be modeled
as follows,

Fd = −1

2
CdρA||vrel||2vrel (31)

vrel = ṗ + p× ω, (32)

where Cd is the drag coefficient of the satellite, ρ is the atmospheric density,A is the satellite’s cross
sectional area, vrel is the velocity of the satellite with respect to the atmosphere, ṗ is the satellite’s
velocity in the ECI, ω is Earth’s angular velocity vector in the ECI.

Using the forces computed in Equations (28) and (29), we derive the dynamical model of the
system:

x =


pchaser

ptarget

ṗchaser

ṗtarget

 , ẋ =


ṗchaser

ṗtarget(
Fchaserg + Fchaserd + u

)
/mchaser(

Ftargetg + Ftargetd

)
/mtarget.

 . (33)

EXPERIMENTS

Scenario

This section presents the solutions obtained using the ADMM solver on a realistic rendezvous ex-
ample. We define a scenario close the specifications of the Pathfinder for Autonomous Navigation
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ẋ3

0 0.5 1 1.5

−5

0

5

Time [h]

C
on

tr
ol

s
[m
N

]

Controls

u1

u2

u3

0 20 40 60

0.2

0.4

0.6

L1 Solver Iterations
C

os
t

Convergence

Opt. Crit.
Cost

−3.5

−3

−2.5

−2

−1.5

O
pt

im
al

ity
C

ri
te

ri
on

Figure 3. Linear dynamics: positions, velocities and constrained control trajectories.
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Figure 4. Nonlinear dynamics: positions, velocities and unconstrained control trajectories.
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Figure 5. Nonlinear dynamics: positions, velocities and constrained control trajectories.

mission. The target satellite is released on a circular orbit at 500 km altitude. The chaser satellite
is released at the same time within a distance of 50.0 m from the target satellite. The initial relative
velocity between the chaser and target satellites is about 1 m/s. Using these initial conditions, we
simulate the dynamical system forward for one hour without control. During this period, the two
satellites drift away from each other. At the end of this period, we compute an optimal control trajec-
tory for the chaser satellite to approach the target satellite. The control trajectory is computed with
a horizon of approximately two hours, which corresponds to slightly more than one complete orbit.
For our experiments, we use a cost function with two terms that account for the fuel-minimization
objective and the final rendezvous goal,

J(x0:N , u0:N−1) =
1

2
xTNQfxN +

N−1∑
k=0

α||uk||1. (34)

Results

We test the scenario described above using both the linear and the nonlinear dynamical models.
For both models, we evaluate the impact of adding control constraints. The set of parameters used
for the experiments is presented in Table 1. This table also presents the total number of LQR
iterations required to solve each problem. The results are presented in Figures 2, 3, 4, 5. For further
details regarding the parameters used, along with the implementation of the algorithm, we refer to
the source code which is available on GitHub.

In the unconstrained case, for both the linear and the nonlinear dynamical model in Figures 2,
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4, we observe an impulsive control trajectory. The control commands are focused on the first and
the last time step of the sequence. This is typical of L1 cost minimization, however, these control
trajectories are, in most cases, not feasible as the satellite RCS has a finite maximum thrust. By
adding a constraint on the applicable control we obtain a bang-off-bang control trajectory in both
the linear and nonlinear cases, see Figures 3 and 5. This bang-off-bang behavior is desirable because
it is suitable to be executed by an RCS system and it minimizes fuel consumption.

Table 1. Optimization Problem Parameters and Performances

Problem Type Linear Linear Nonlinear Nonlinear
unconstrained constrained unconstrained constrained

Horizon (h) 1.7 1.7 1.7 1.7
Node Points (s) 100 100 100 100
α 1 1 1 1
Qf 1e3I 1e3I 1e3I 1e3I
ρ 1e-2 1e-1 1e-1 1e1
ε 4.5e-3 4e-4 6e-5 5e-6
Number LQR passes 86 404 120 206

CONCLUSION

This study presents an iterative algorithm to solve optimal control problems with L1 cost. The
algorithm relies on ADMM to decompose an optimization over a nonsmooth cost function into a
sequence of optimization problems with smooth cost functions. When the dynamics of the sys-
tem is linear, convergence to a global minimum is guaranteed. Moreover, each optimization sub-
problem of the sequence is an LQR problem, which has a closed-form solution. This enables the
algorithm to converge rapidly to a solution. In the case of nonlinear dynamics, the sequence of prob-
lems with smooth cost function is solved efficiently using a fast, robust iterative LQR solver with
low-memory footprint.7 These strengths allow for implementation in flight software on resource-
constrained computing hardware. The spacecraft rendezvous problem inspired from the Pathfinder
for Autonomous Navigation mission developed in this paper opens the way to applications in astro-
dynamics. For instance, the algorithm’s implementation onboard a CubeSat for embedded trajec-
tory optimization could enable rendezvous maneuvers for this type of spacecraft. Our implemen-
tation of the L1 cost optimizer is available at https://github.com/RoboticExplorationLab/
L1CostOptimizer.jl.
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