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Abstract—The smallsat revolution has impacted the architecture
of most modern satellites with the notable exception of fine-
pointing space telescopes. Conventional attitude control hard-
ware scales poorly as the spacecraft gets smaller, resulting in
significant mass and performance penalties for nanosatellites
with strict pointing requirements. This paper presents a novel
attitude actuation and planning strategy that utilizes actuated
booms with tip masses and magnetorquers for three-axis point-
ing and momentum desaturation. The speed of the booms
is an appropriate match for the slowly varying environmental
disturbance torques encountered in low-Earth orbit. As a result,
these booms do not create the high-frequency jitter that reaction
wheels do, lessening the need for complex second-stage correc-
tion hardware in the payload. An optimization-based motion
planner is able to reason about the orbital ephemeris to ensure
the booms never exceed their actuation limits, and a Linear
Quadratic Gaussian controller is able to maintain fine-pointing
during times of payload operation.
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1. INTRODUCTION
Space telescopes have been able to explore the universe in
ways that terrestrial telescopes cannot through the atmo-
sphere. Current monolithic systems like the Hubble Space
Telescope use onboard reaction wheels or Control Moment
Gyroscopes (CMGs) to control pointing [1]. These actu-
ators spin weighted rotors onboard the spacecraft to store
angular momentum and maintain pointing in the presence
of disturbance torques. Unfortunately, the fractional mass
of traditional attitude-control hardware grows dramatically as
the spacecraft gets smaller. For larger satellites, the actuators
take up only a few percent of the total spacecraft mass but, as
the spacecraft gets smaller, it can consume 30% or more of
the total mass [2].

One issue with modern attitude control hardware on
nanosatellites comes from the vibrations present in reaction
wheel and CMG operation. These actuators have to spin at
high angular velocities to store the required onboard angular
momentum, and small defects or imbalances in the rotors
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Figure 1. Proposed architecture for a 6U CubeSat space
telescope. Each boom has a single degree-of-freedom in
linearly independent axes, enabling three-axis attitude

control. Magnetorquers are used to desaturate the angular
momentum of the booms and keep them within their

operating limits.

cause high-frequency jitter. These vibrations can resonate
with structural modes in the satellite and can corrupt payload
pointing performance. To deal with image-corrupting jitter,
nanosatellite payloads employ second-stage corrections to
enable finer pointing performance for the payload than the
body of the spacecraft. Common methods for accomplishing
this are fast-steering optical mirrors, image plane shifting
with lead zirconate titanate (PZT) actuators, and image sta-
bilization [3]–[6]. These highly complex electromechanical
systems are expensive and must be tailored to a specific
payload, increasing costs and payload size, weight, and power
(SWaP).

In this paper, a novel actuation strategy for fine-pointing
nanosatellites is explored by abandoning high-frequency
rotor-based actuators in favor of low-frequency deployable
booms, as shown in Figure 1. By taking advantage of the
squared relationship between boom length and the inertia of
the boom, tip-mounted masses provide the control authority
required for attitude control without having to accelerate or
decelerate the booms too aggressively. A nanosatellite would
deploy three booms about linearly independent axes and
rotate them slowly to reject the slowly varying disturbance
torques. By better matching the actuators’ speed to the
frequency content of the disturbances, these booms are able to
eliminate jitter and enable high-accuracy body pointing of the
nanosatellite. By improving body pointing, payloads are no
longer restricted to those that can accommodate second-stage
correction, and existing payloads can be simplified.

For nanosatellites in low-Earth orbit, disturbance torques
come in the form of drag, solar radiation pressure, magnetic,
and gravity-gradient torques. All of these disturbances vary
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slowly throughout an orbit and can be predicted or estimated
with high accuracy. With knowledge of the incoming dis-
turbance torques, the nanosatellite can formulate a motion
plan that accounts for disturbances and keeps the deployable
booms from hitting their hard stops by using the onboard
magnetorquers to offload angular momentum through in-
teractions with the Earth’s magnetic field [7], [8]. Since
nominal operations have the nanosatellites inertially pointing
during payload operations, linearized attitude dynamics are
sufficiently accurate for planning purposes. This allows
for a convex formulation of the motion-planning problem,
guaranteeing a globally optimal solution in polynomial time
[9].

Our primary contributions in this paper include:

1. The introduction of a novel attitude-actuation strategy for
fine-pointing nanosatellites.

2. The application of convex optimization to motion plan-
ning for nanosatellites with actuated booms.

3. An estimator and controller architecture for handling
boom control during payload operations.

In the remainder of this paper, we first provide details on the
simulation environment used for this research in Section 2.
Next, the deployable-boom actuation strategy is discussed
in Section 3, and a convex motion planner is developed in
Section 4 to reason about the actuator’s constraints. A lower-
level estimation and control architecture is then detailed in
Section 5. Finally, numerical experiments are presented in
Section 6 to validate the proposed ideas, and results are
summarized in Section 7.

2. SPACECRAFT DYNAMICS MODEL
This section describes the model used to analyze and simulate
the dynamics of a nanosatellite space telescope in low-Earth
orbit. Since the spacecraft has no propulsion onboard, the or-
bital and attitude dynamics are decoupled and can be modeled
separately. The open-source Julia package SatelliteDynam-
ics.jl is used for orbital simulation, taking into account high
order gravity, atmospheric drag, solar radiation pressure, and
third-body accelerations. For the attitude dynamics, a rigid-
body simulation is used that includes the disturbance torques
present in low-Earth orbit.

We denote the Earth-Centered Inertial frame (ECI) as E, and
the spacecraft body frame as B. Relating these two frames is
BQE, the rotation matrix that takes vectors expressed in E and
resolves them in frame B.

Gravity-Gradient Torque—Gravity varies inversely with the
square of the distance from the central body. Because of
this, parts of the spacecraft that are farther away from the
center of the central body experience a smaller gravitational
force than the parts that are closer. The resulting non-
uniform gravitational force acting on the spacecraft causes
a torque. This torque can be neatly expressed in terms of the
spacecraft’s attitude, orbital position, and the inertia [8], [10].
First, the normalized position vector is computed in the body
frame:

m̂ =
BQErE
‖rE‖

, (1)

then, the gravity-gradient torque can be calculated,

τgg =
3µ

‖r‖3
(m̂× Jm̂), (2)

where µ is the standard gravitational parameter for Earth.
This calculation only takes into consideration the spherical
gravitational term, since the gravity gradient torque from
higher order gravity terms is of negligible magnitude. For
inertially pointing spacecraft in pure Keplerian motion, the
resulting gravity gradient torque is periodic with the orbit.

Atmospheric Drag Torque—To describe the atmospheric drag
torque, the relative velocity of the spacecraft with respect to
the atmosphere is calculated with the following:

vrel = BQE(veci − ωEarth × rE). (3)

A normalized version of this vector will be represented as
v̂rel = vrel/‖vrel‖. The spacecraft in this experiment has
been parameterized as a box with 6 orthogonal faces. This
geometry is described with normal vectors n̂i for each face,
position vectors from the center of mass of the spacecraft
to the center of pressure of each face ri, and the area of
each face Si. Only the faces in the direction of the relative
velocity vector are affected, and the force is proportional to
the cosine of the angle between the normal face vector and
the relative velocity vector. This can also be represented as
the dot product between two normalized vectors:

wi = max(0, vT [EQB n̂i]). (4)

The force on each face is then calculated with the atmospheric
density ρ and the coefficient of drag Cd,

Faero,i = −1

2
ρCd‖vrel‖vrelSiwi. (5)

The torque acting on the nanosatelite is then the sum of the
moments caused by these forces:

τaero =

6∑
i=1

ri × Faero,i. (6)

Solar Radiation Pressure Torque—Similar to the aerodynamic
drag torque, the radiation from the sun carries momentum,
and can impart a force on the spacecraft. First, the position
vector from the spacecraft to the sun is calculated as:

Brsun = Ersun − ErB, (7)

after which it is expressed in the body frame and normalized:

ŝ =
BQE Brsun

‖Brsun‖
. (8)

Based on the spectral and diffuse reflection coefficients,
Rspec and Rdiff respectively, the optical properties of the
spacecraft material with respect to solar radiation pressure
can be calculated. The combined effects of reflection, dif-
fusion, and absorption are captured in our variable qi,

qi = 2
[1
3
Rdiff +Rspecŝ

T n̂i
]
n̂i + (1−Rspec)ŝ. (9)
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The force caused by radiation pressure on each face is then,

Fsrp,i = −PsunSiqi ·max(0, ŝT [EQB ni]), (10)

and the final torque is the sum of the moments caused by the
force on each face:

τsrp =

6∑
i=1

ri × Fsrp,i. (11)

Magnetic Torques— We use the International Geomagnetic
Reference Field (IGRF) [11] to model the Earth’s magnetic
field. The IGRF models the scalar potential of the magnetic
field with a spherical harmonic expansion and calculates the
magnetic field vector as the negative gradient of this potential
with respect to the position. This potential is described by
a set of time-varying coefficients that account for decades of
empirical data and can predict the Earth’s magnetic field up
to 5 years in the future. This resulting magnetic field vector
is a function of position and time, and for spacecraft with no
propulsion, can be computed online to predict future mag-
netometer measurements. The spacecraft can then use the
onboard magnetorquers to interact with the Earth’s magnetic
field in the following way:

τmag = m× bB, (12)

where bB is the magnetic field vector expressed in the space-
craft body frame, and m is the spacecraft’s magnetic moment
in the body frame. The total disturbance torque on the
nanosatellite is the sum of the aforementioned torques:

τ = τgg + τaero + τsrp + τmag. (13)

3. ACTUATION STRATEGY
To justify the introduction of a novel actuation strategy, the
nature of the disturbance torques was analyzed. A 1000-trial
Monte-Carlo simulation of the orbital and attitude dynamics
was performed and disturbance torques were collected. The
orbits in the simulations were at an altitude of 550 km with
inclinations between 0◦ and 90◦, eccentricities between 0
and 0.00002, and epochs between 2014 and 2017. These
dispersions served to capture the full range of potential
disturbance torques, as well as accurately sample the time-
varying atmospheric density. A discrete Fourier transform of
the disturbance torque data was taken, and the magnitudes of
the terms in the Fourier series were used to plot its power-
spectral density in Figure 2.

Figure 2 displays a clear mismatch between the speed of the
disturbances and the speed of the actuators currently used
in space telescopes. Jitter from traditional reaction wheels
and the structural modes of the spacecraft is 3-4 orders of
magnitude faster than the disturbance torques. This mismatch
strongly suggests that slower actuators could be used, and
as a result, interactions between the actuators and structural
modes could be avoided.

The proposed architecture is displayed in Figure 1, with three
masses mounted to deployable booms that will be used for
full three-axis attitude control. Each deployable boom has
a single-degree-of-freedom actuator at the interface between
the boom and the spacecraft that can rotate the boom and
mass combination. By moving the booms, angular momen-
tum is transferred from the body of the spacecraft to the
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Figure 2. The frequency content of disturbance torques on a
small satellite in low-Earth orbit. Disturbances are due to
atmospheric drag, solar radiation pressure, and the gravity
gradient. The frequency content of the disturbances is of
significantly lower frequency than both standard reaction

wheels and structural modes of the nanosatellites.

Figure 3. Boom actuation with a direct-drive micro-stepper
motor. Torques commanded by the micro-stepper will

accelerate and decelerate the boom, fully controlling the
attitude of the nanosatellite.

masses, allowing for full actuation of the spacecraft’s attitude.
This actuation strategy is significantly slower than reaction
wheels, and will therefore avoid both high-frequency jitter as
well as the excitement of the flexible modes of the spacecraft.

Two potential boom-actuator configurations are described in
Figures 3 and 4, with a stepper motor and a linear voice coil
respectively. Both of these actuators are able to precisely
move the boom, but will also impart constraints on the torque,
velocity, and configurations of the boom. These constraints
will be accounted for by the onboard motion planner to
ensure full attitude actuation is maintained. The boom ac-
tuators themselves can also contribute unwanted dynamics,
like cogging torques and stiction, into the dynamics of the
boom. Care must be taken when designing and building these
actuators to ensure that these contributions to the dynamics
are well characterized and incorporated into the planner.
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Figure 4. Boom actuation with a linear voice-coil actuator.
By extending and contracting, the linear force is converted to

a torque near the bass of the boom. This moment in turn
controls the angular acceleration of the boom.

4. MOTION PLANNER
The spacecraft must maintain pointing through a balance of
magnetorquer control and boom control. A holistic planning
approach is taken due to the following constraints: The
magnetorquers cannot be used during payload operations, and
the deployable booms must stay within their allowable ranges
in position, velocity, and acceleration. Coarse attitude control
has been demonstrated using only magnetorquers [7], but this
control strategy is not precise enough for ultra-fine pointing
and relies on a varying magnetic field to demonstrate full
three-axis actuation. The booms provide full three-degree-
of-freedom actuation of the attitude but must avoid violating
their actuator constraints. These conditions can be combined
into a motion planner that balances magnetorquer use for
coarse pointing and momentum desaturation while utilizing
the booms for precise pointing during periods of payload op-
eration. Similar to the existing nanosatellite telescopes DeMi
[6] and ASTERIA [12], this motion planner is tailored to the
case where exposures are to be taken during eclipse. This
means that the nanosatellite must turn off the magnetorquers
for the duration of the ∼ 35-minute exposures.

The angular positions of the booms are described with θ ∈
R3, and the angular velocities of the booms as θ̇ ∈ R3. The
control input responsible for boom actuation is the angular
acceleration of the booms, denoted as α ∈ R3. The dynamics
of the booms themselves are modeled as double integrators
with angular acceleration as a control input:

θ̈ = α. (14)

Assuming a zero-order hold on the commanded angular ac-
celeration and discretizing, we have,[

θk+1

θ̇k+1

]
= A

[
θk
θ̇k

]
+Bαk, (15)

where A and B are a function of the sample time, dt:

A =

[
I3 dt · I3
03 I3

]
, (16)

B =

[
1
2dt

2 · I3
dt · I3

]
. (17)

The planning problem is then posed as a convex optimization
problem where the optimal sequence of actuator commands,

magnetic moment m and boom angular acceleration α, are
solved for that counter all expected disturbance torques. To
ensure that the magnetorquers are never on during payload
operations, the optimization formulation conservatively pro-
hibits any magnetorquer usage during periods of eclipse,
denoted as indexes k ∈ E . The full optimization problem
can be written as follows:

minimize
m,α, θ, θ̇

N∑
k=1

‖[mT
k , γα

T
k , βθ

T
k , σθ̇

T
k ]T ‖2

subject to τk =mk × bB − Jboomαk∀k,[
θk+1

θ̇k+1

]
=A

[
θk
θ̇k

]
+Bαk ∀k,

mmin ≤mk ≤ mmax ∀k,
αmin ≤αk ≤ αmax ∀k,
θmin ≤θk ≤ θmax ∀k,
θ̇min ≤θ̇k ≤ θ̇max ∀k,
mk =0 ∀k ∈ E ,

(18)

where the inertias of the deployable booms are the diagonal
entries of Jboom, the magnetic field of the Earth expressed in
the spacecraft body frame is bB, and the disturbance torque is
τ . The torque matching constraint and the kinematics of the
boom are both enforced as linear equality constraints, and all
the state and actuator limits are expressed as box inequality
constraints [13]. The cost function is a quadratic penalty on
control usage for the two sets of actuators, with γ, β, and σ
as tuning parameters. Since the cost function is quadratic and
positive definite and the constraints are all linear, problem 18
can be expressed as a convex Quadratic Program (QP). There
are many readily available and robust QP solvers available
that are able to find the global optimum, as well as many
specialized solvers for use on embedded systems [13]–[15].
Using one of these tools, a highly performant customized
solver can be generated for this specific problem, and can be
implemented on compute-constrained flight hardware.

5. ESTIMATION AND CONTROL
Fine-pointing nanosatellites demand the strictest pointing
requirements during periods of payload operation. The boom
actuators are solely responsible for attitude control during
these periods since the magnetorquers are too coarse. The
planner is able to leverage predicted disturbance torques
to put the booms in a configuration that allows for full
controllability during the exposure, but these predicted dis-
turbance torques are not accurate enough to feed forward
to the controller during these sensitive payload operations.
Instead, during image captures, these disturbance torques
will be estimated online in a recursive filter, and the online
estimate of the disturbance torque will be incorporated as
a feedforward control input. This section details the state
estimator and controller combination that is used to maintain
high-accuracy pointing during periods of image capture.

State Estimator

The disturbance torques on the nanosatellite are smooth and
slowly varying, as shown in Figure 6. A Multiplicative Ex-
tended Kalman Filter (MEKF) will be used for simultaneous
estimation of the attitude, angular velocity, and disturbance
torque [8]. Conventional MEKF’s on large spacecraft omit
the spacecraft’s angular velocity from the state due to the
accuracy of the onboard gyroscope. Nanosatellites do not
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Figure 5. Motion plan for a nanosatellite with control over both boom torques and magnetorquers, given estimated future
disturbance torques. During eclipse, when payload operations take place, the nanosatellite is constrained to only use the boom

torques due to their precision.

have gyroscopes of this caliber and must estimate the angular
velocity online as a result. The filter state is denoted z, and is
augmented to include both the disturbance torque τ̂ , as well
as its first derivative:

z =
[
qT ωT τ̂T ˙̂τT

]T
, (19)

where q ∈ R4 is the quaternion describing the rotation from
E to the body frame B, ω ∈ R3 is the angular velocity of the
nanosatellite, τ̂ ∈ R3 is the disturbance torque, and ˙̂τ ∈ R3 is
its time derivative. Estimating the disturbance torque deriva-
tive allows the filter to better predict and anticipate changes
in the disturbance torque. The deterministic dynamics model
for the MEKF is as follows:

ż =


1
2q ⊗ (ω)

J−1(τ̂ − Jboomα− ω × Jω)
˙̂τ
0

 . (20)

These dynamics are discretized using an explicit integrator
for a given sample time ∆t, and additive white Gaussian
(AWGN) process noise, νx, is added as follows:

zk+1 = f(zk, αk,∆t) + νx. (21)

In the measurement model, we assume full measurements of
the attitude and angular velocity,

y =

[
q
ω

]
+ νy, (22)

where νy is AWGN sensor noise. From here, the MEKF
as described in [8] is implemented with the addition of the
angular velocity to the estimator state.

Feedback Controller

By linearizing the dynamics of the nanosatellite about a
nominal desired attitude, and replacing the quaternion with
an axis-angle vector φ ∈ R3, the local error dynamics can be
expressed as the following:

ẋlqr =

[
φ̇
ω̇

]
=

[
0 I
0 0

] [
φ
ω

]
+

[
0

−Jboom

]
α. (23)

From here, the dynamics can be discretized assuming a zero-
order hold on α, and a feedback gain K is solved for that
minimizes the following infinite-horizon Linear Quadratic
Regulator (LQR) cost function:

`(x, u) =
1

2

∞∑
k=0

xTkQxk + αT
kRαk, (24)

where Q ∈ R6×6 and R ∈ R3×3 are positive definite
diagonal matrices [16]. The resulting control law takes the
form,

u = −Kxlqr − J−1boomτ̂ , (25)

where τ̂ is the estimated disturbance torque from the MEKF.

6. NUMERICAL EXPERIMENTS
All experiments were run in Julia [17], using the optimization
modeling language JuMP [18] with Mosek [19] as the solver
for the motion-planning problem. All of the code used for
the experiments is readily available at https://github.
com/RoboticExplorationLab/WiggleSat.jl.
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To test the planning and control algorithms presented in this
paper, a nanosatellite in a low-Earth orbit with an altitude of
420 km, inclination of 51.4◦, and eccentricity of 0.00108 is
considered. The orbit is propagated with accelerations from
a high-order gravity model, atmospheric drag, solar radiation
pressure, and third body contributions from the Moon and the
Sun [20]. The disturbance torques as described in Section 2
are then calculated given the desired attitude. The attitude
measurement has a standard deviation of 1 arcsecond [2], the
gyroscope is modeled after the Honeywell GG1320AN with
an angle random walk of 0.0035 deg/

√
hr, and the sample

rate on the sensors, filter, and controller is 1 Hz [21].

The motion planner, as detailed in Section 4, is used to
calculate a nominal control plan for both the magnetorquers
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pointing even in the presence of the sensor noise and

unknown disturbance torques.
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Figure 9. For each attitude sensing error, a series of
simulations were run to estimate the mean and 3-σ bounds

for the RMS body pointing error. Despite all the simulations
using the same gyroscope, the estimator and controller
combination is able to continue driving down the body

pointing error with the sensing error.

and the booms. With a time horizon of 4 hours, the planner
is able to account for two eclipse periods where the mag-
netorquers are unavailable. The solution from the planner
is shown in Figure 5, with the nominal control plans for
both boom torques as well as commanded magnetic moment.
The planner effectively balances momentum management
with the requirement to put the arms in a configuration prior
to eclipse that allows for full controllability throughout the
duration of the eclipse.

During eclipse, the estimator and controller designed in
Section 5 are used to maintain the desired attitude. Instead
of relying on the predicted disturbance torque, an MEKF is
used to estimate both the attitude and angular velocity, as
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well as the disturbance torque and its time derivative. The
convergence of this filter on the unknown disturbance torque
is shown in Figure 7. Even with a poor initialization of all
zeros for the estimate of the disturbance torque, the filter
is able to converge on the true value within one minute of
operation.

The pointing performance of the combined estimator and
controller is shown in Figure 8. Here, the initial condition
starts outside the 1-arcsecond error circle, and the controller
is able to keep the error inside the circle for a Root Mean
Square (RMS) body pointing error of 0.39 arcseconds. To
better evaluate the robustness and performance of this esti-
mator and controller combination, this same simulation was
run for a variety of initial conditions with a range of attitude
sensing errors. The RMS body pointing error as a function
of this attitude sensing error is shown in Figure 9, where
the mean body pointing performance as well as three-sigma
bounds are shown. We also note that the filter performs well
enough that body-pointing errors are able to decrease with
attitude sensing error, despite using the same gyroscope for
all simulations.

7. CONCLUSIONS
This paper proposes a novel attitude actuation strategy for
fine-pointing nanosatellites. The new approach abandons
traditional high-frequency reaction wheels in favor of low-
frequency actuated booms. As shown by a spectral analysis of
the environmental disturbance torques, these low-frequency
deployable booms are a much better fit for the slowly varying
disturbance torques encountered in low-Earth orbit. By
performing control in the same frequency range as these
disturbances, many of the complications that reaction wheels
introduce, including high-frequency jitter and excitement of
flexible structural modes, can be avoided. This actuation
methodology results in finer body-pointing performance, re-
ducing the need for second-stage correction systems to point
sensitive payloads.

Control of a spacecraft equipped with the proposed boom
actuators was demonstrated via a convex-optimization-based
motion planner paired with an MEKF estimator and LQR
controller during sensitive payload operations. This planner
was able to balance magnetorquer usage and boom actuation
to combat environmental disturbances, reason about actuator
limits and boom constraints, and avoid magnetorquer usage
during periods of eclipse for improved payload operations.
This optimization problem was formulated as a quadratic
program and can be solved quickly and reliably onboard
spacecraft with limited computing resources.
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