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Abstract— As scientific and crewed payloads have more de-
manding goals, precise atmospheric entry guidance is playing
an increasing role in mission success. State-of-the-art entry
guidance algorithms are structured in a predictor-corrector
framework, where a simulation is used to predict a trajectory,
and corrections are then made to the control inputs. These
guidance methods are simple and effective, but current algo-
rithms assume low lift-to-drag entry vehicles, are limited to only
bank-angle control, and have a limited ability to guarantee the
safety of the vehicle. We propose a new predictor-corrector
entry guidance method that formulates the correction step as
a convex optimization problem. This allows for more flexibility
in specifying the vehicle’s dynamics and control inputs, and the
ability to explicitly handle safety constraints such as heating,
pressure, and acceleration limits. We test the new algorithm in
Mars entry scenarios similar to the Mars Science Laboratory
with both bank-angle control and bank-angle plus angle-of-
attack control, demonstrating both its performance and ability
to generalize to future vehicle capabilities.
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1. INTRODUCTION
In 1971 the Soviet Union’s Mars-2 spacecraft made history
by entering the Martian atmosphere before impacting the
surface. Nine days later, an identical Mars-3 spacecraft per-
formed the first soft-landing on the Martian surface, ushering
in a new era in planetary exploration. NASA followed with
successful Mars landings in 1976 with Viking 1 and 2 and
has since then landed and operated multiple robotic systems
on the Martian surface [1].

Entry vehicle architectures can be divided into three broad
categories [1]: 1) Ballistic entry is an uncontrolled descent
with drag as the only force, 2) unguided ballistic-lifting
entry has an uncontrolled non-zero lift force, and 3) guided
ballistic-lifting entry has some control over the vehicle’s lift
vector. Controlled entry guidance allows for the prioritization
of landing locations with scientific merit instead of just those
that minimize risk to the vehicle.
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The Mars Science Laboratory (MSL) carrying the Curiosity
rover touched down in 2012 as the first Mars entry vehicle
with guided ballistic-lifting entry. MSL had control over
the vehicle bank angle during entry, enabling control of the
direction of the lift vector within the lifting plane. While
MSL dramatically reduced the size of the landing ellipse
from over 100 km to 10 km, its guidance is still too coarse
for pinpoint landings. By developing more performant entry
guidance capabilities, entry vehicles could effectively place
robotic or crewed landers in desirable science collection
areas, including high altitude sites.

Much of the work on guidance for low lift-to-drag entry vehi-
cles originated with the Apollo terminal guidance methods.
These algorithms, as described in [2], rely on control of
the bank angle with simple switching manuevers to control
the cross-range and down-range errors. Slightly modified
versions have been developed for use with more recent Mars
entry vehicles, such as in [3]. Current research investigates
the use of predictor-corrector algorithms [4] to improve the
landing accuracy. A popular predictor-corrector formula-
tion that exhibits bank-angle switching behavior is the Fully
Numerical Predictor-corrector Entry Guidance (FNPEG) al-
gorithm [5]. In the baseline FNPEG algorithm, Newton’s
method is used to solve for a static bank-angle that satisfies
a terminal downrange distance constraint, and the sign of
the bank-angle is modulated to control crossrange errors [6].
Here, the prediction phase is used to generate gradients for
the terminal constraint, and corrections are applied to the
open-loop commanded bank-angle in an effort to satisfy these
terminal constraints. This framework is simple and effective
but requires significant added complexity for incorporation of
safety constraints or changes to the vehicle control inputs.

Trajectory optimization for offline planning of entry vehicle
trajectories has been explored in [7] and [8], where the
nonconvex optimal control problem was solved by lineariz-
ing the nonlinear dynamics and constraints, solving a conic
optimization problem with a trust region, and repeating until
convergence. This successive-convexification method was
used instead of standard NonLinear Programming (NLP)
solvers, like SNOPT [9] or IPOPT [10], because it is able
to directly handle second-order cone constraints instead of
relying on local linear approximations. Optimal trajectories
computed offline were then paired with an optimization-
based tracking controller, as described in [7] and [8]. While
these formulations are able to stabilize a trajectory, there
are no guarantees that safety constraints can be satisfied
online. Also, the computational complexity of the trajectory-
optimization formulation makes these methods intractable for
real-time control onboard an entry vehicle.

The Convex Predictor-corrector Entry Guidance (CPEG) al-
gorithm proposed in this paper combines ideas from tra-
jectory optimization with the predictor-corrector guidance
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framework by solving a constrained optimization problem
during the correction step. First, the dynamics of the entry
vehicle with the current control plan are simulated to a target
altitude for a predicted trajectory. Next, the vehicle dynamics
are linearized about the predicted trajectory and a convex
trajectory optimization problem is solved that minimizes
landing error. By solving for a correction using convex
optimization, CPEG is able to reason about the full state
and control history to inform the correction instead of just
the final state. This also allows for the vehicle’s safety
constraints, such as heating, pressure, and acceleration, to
be explicitly included in the correction computation. Our
specific contributions in this paper are:

1. A general quasi-linear formulation of entry vehicle dy-
namics that is well-suited to numerical optimization.

2. A predictor-corrector entry guidance algorithm with a
highly generalizable correction step utilizing convex opti-
mization.

3. Customized trust regions and objective functions for entry
vehicles with multiple control modalities.

The paper proceeds as follows: In Section 2, the classic Vinh
entry vehicle dynamics are compared with a more modern
Cartesian approach. In Section 3, the details of the full
nonconvex trajectory optimization problem are discussed. In
Section 4, the CPEG algorithm is derived. In Section 5,
CPEG is validated on entry vehicles with bank-angle control,
as well as bank-angle and angle-of-attack control. Finally,
Section 6 outlines our conclusions and potential future re-
search directions.

2. ENTRY VEHICLE DYNAMICS
Despite much of the recent powered-descent guidance lit-
erature using Cartesian state representations, entry vehicles
are still most often represented in spherical coordinates. In
this section, the traditional entry vehicle dynamics denoted
below as the “Vinh” model will be discussed, as well as an
alternative Cartesian formulation.

The Vinh Model

The classic Vinh model, presented in 1976 in [11] and again a
few years Later in Vinh’s textbook [12], has been the standard
method for simulating entry vehicles for the past 45 years.
Parameterizing the entry vehicle in spherical coordinates, the
state in the Vinh model contains familiar terms like latitude,
longitude, and flight-path angle. Despite being highly non-
linear and prone to scaling issues, it is the most common
dynamics model in the literature [6], [11]–[16].

The dynamics in the Vinh model are calculated with the
angle-of-attack, α, bank-angle, σ, flight-path angle, γ, lon-
gitude, θ, latitude, φ, and heading angle, ψ. The resulting
equations of motion over a planet that’s rotating with a
constant angular velocity Ω are,

ṙ = V sin γ, (1)

θ̇ = V cos γ sinψ/(r cosφ), (2)

φ̇ = V cos γ cosψ/r, (3)

V̇ = −D − sin γ/r2, (4)

+ Ω2r cosφ sin γ cosφ

− Ω2r cosφ cos γ sinφ cosψ,

γ̇ = L cosσ/V +
(
V 2 − 1/r

)
cos γ/(V r) (5)

+ 2Ω cosφ sinψ + Ω2r cosφ cos γ cosφ/V

+ Ω2r cosφ sin γ sinφ cosψ/V,

ψ̇ = L sinσ/(V cos γ) + V cos γ sinψ tanφ/r (6)
− 2Ω(tan γ cosψ cosφ− sinφ)

+ Ω2r sinφ cosφ sinψ/(V cos γ),

where r is the normalized radial distance from the center of
the planet, V is the normalized planet-relative velocity, and L
and D are the magnitudes of the lift and drag accelerations.

This model is highly nonlinear in both the state and the
control, even when the planetary motion is ignored. While
the planet’s angular velocity is assumed to be constant, its
inclusion in the dynamics still contributes significant non-
linearities. Because of this, much of the literature ignores
the planet’s angular velocity [7]. There are also scaling
issues present if these equations are naively implemented.
Since r and V are not angles, they are usually of a much
larger magnitude than the rest of the state. This can lead to
poor accuracy in variable time-step integrators, as well as ill-
conditioning in numerical trajectory optimization.

Cartesian Entry Dynamics

We have found that entry vehicle dynamics are both simpler
to derive and numerically better-conditioned when repre-
sented in standard Cartesian coordinates instead of the spher-
ical coordinates used in the Vinh formulation. This state
representation is popular with the powered-descent guidance
community, albeit without any aerodynamic forces in the
dynamics [17]–[19].

We assume a planet-fixed frame P is aligned with an inertial
frame N along the z axis. The planet spins with angular
velocity ω ∈ R3 in the positive z direction, making the
velocity of the entry vehicle the following:

P v = Nv − ω × r, (7)

where Nv ∈ R3 is the inertial velocity, P v ∈ R3 is the
planet relative velocity, and r ∈ R3 is the position of the
entry vehicle in the planet frame. This expression can be
differentiated once more to provide the relationship between
the inertial and planet-relative accelerations:

Pa = Na− 2(ω × P v)− ω × (ω × r). (8)

The state of the entry vehicle can be parameterized with the
planet-relative position vector r, and planet relative velocity
P v denoted as just v, both expressed in the coordinates of the
planet frame. The Cartesian dynamics can now be written in
state space as,[
v
a

]
=

[
0 I

−[ω×]2 −2[ω×]

] [
r
v

]
+

[
0

ag + aD + aL

]
, (9)

where [ω×] is the skew-symmetric cross product matrix,

[ω×] =

[
0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

]
. (10)

One of the main benefits of the dynamics in equation (9) is
the linear kinematics. This means that linear approximations
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Figure 1. The E frame is fixed to the entry vehicle, with ê1

in the direction of the specific angular momentum vector,
and ê2 = v̂ × ê1. When defined in this frame, the lift vector

can be expressed using only ê1 and ê2.

of the relationship between position and velocity are exact,
and the only nonlinearities present are in the accelerations.
The gravitational acceleration in the direction of the planet’s
center is expressed assuming simple spherical gravity:

ag = − µ

‖r‖3
r, (11)

where µ ∈ R is the standard gravitational constant for the
given planet. The acceleration caused by the drag force is in
the direction opposing velocity, and is calculated as,

aD = − 1

2m
ρACd‖v‖v, (12)

where m ∈ R is the mass of the entry vehicle, ρ ∈ R is
the atmospheric density, A ∈ R is the aerodynamic reference
area, and Cd ∈ R is the coefficient of drag. In this work, the
atmospheric density ρ ∈ R will be represented by a piecewise
exponential function [16].

For the description of the lift acceleration, a reference frame
is defined that describes a plane about the entry vehicle that
is orthogonal to the velocity vector. This two-dimensional
frame, referred to as the E frame and depicted in Fig. 1, has
two basis vectors described by the following:

ê1 =
r × v
‖r × v‖

, (13)

ê2 =
v × ê1

‖v × ê1‖
. (14)

The magnitude of the lift vector is calculated as,

‖L‖ =
1

2m
CLρ(r)A‖v‖2, (15)

where CL ∈ R is the coefficient of lift. In the case where
the entry vehicle only has control over the bank-angle, the
resulting lift acceleration can be described by the magnitude
of the lift and the bank-angle:

aL = ‖L‖(sin(σ)ê1 + cos(σ)ê2). (16)

In the case where the entry vehicle can control both the angle-
of-attack as well as the bank-angle, the lift vector can be
written as,

aL = ‖L‖(`1ê1 + `2ê2), (17)

subject to the constraint ||`21 + `22|| ≤ 1. Here the lift
acceleration is a linear function of the control inputs, which is
a key feature when this model is linearized in an optimization
problem. Both the Vinh model and the Cartesian model
are nonlinear, but the Cartesian model behaves significantly
better under linearization, making it a far better candidate for
trajectory optimization.

State and Control Definitions

In the case where only the bank-angle is controlled, the state
is augmented with the bank-angle, and the sole control input
is the derivative of this bank-angle with respect to time. This
allows for cost functions that specify desired behavior for the
derivative of the bank-angle, with the state and control as the
following:

x =
[
rT vT σ

]
, (18)

u = σ̇. (19)

These dynamics are now in control-affine form with linear
kinematics. For the case with actuation of both the bank angle
and angle-of-attack, the state and control are the following:

x =
[
rT vT

]T
, (20)

u = [`1 `2]
T
, (21)

where `1 and `2 were defined in (17).

3. TRAJECTORY OPTIMIZATION
Feedback control laws for entry vehicles suffer in perfor-
mance due to the severe underactuation of the vehicle. This
is, in part, due to the fact that an entry vehicle has very
limited ability to speed up or slow down in the along-track
direction. To deal with this, it makes more sense to solve the
guidance problem with a holistic planning approach, one that
can reason about this limited control authority and plan for it.
Therefore, we pose this problem as a trajectory optimization
problem, where a locally optimal state trajectory and control
plan can be solved for numerically.

Safety Constraints

Three key vehicle safety constraints — heating, pressure,
and acceleration — are most dependent on the atmospheric
density. Unfortunately, this is also the part of the environment
in which there is the largest amount of uncertainty. The
atmospheric density is often only known to roughly within a
factor of two, with even less known about the wind conditions
[16].

The heating constraint has to do with the max allowable heat
rate that the ablative heat shield can withstand [20]. This is
measured in power per square centimeter, and it is expressed
as the following:

Q̇ = kq
√
ρV 3.15 ≤ Q̇max. (22)

This function is nonlinear but can be locally approximated
with linear functions during the correction step. The next
safety constraint is the maximum dynamic pressure on the
entry vehicle, which is expressed as the following:

q = .5ρV 2 ≤ qmax. (23)

The last safety constraint is the maximum allowable normal
load, which is the total aerodynamic force on the entry
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vehicle. This is expressed as a norm of the lift and drag
forces:

a =
√
‖L‖2 + ‖D‖2 ≤ amax. (24)

Full Nonconvex Formulation

In order to formulate a convex correction problem, we first
consider the full nonlinear non-convex problem. First, the
dynamics described in equation (9) are discretized with an
explicit integrator like the classic fourth-order Runge-Kutta
method [21], giving a discrete-time dynamics model of the
form,

xk+1 = f(xk, uk,∆tk). (25)

No assumptions have been made about the control configura-
tion in this dynamics model: it can account for either bank-
angle-only or bank-angle plus angle-of-attack control. The
full nonlinear trajectory optimization problem has the form,

minimize
x, u,∆t

`N (xN , uN ) +

N−1∑
k=1

`k(xk, uk)

subject to xk+1 = f(xk, uk,∆tk)∀k, (26)
gk(xk, uk) ≤ 0 ∀k,

∆tmin ≤ ∆tk ≤ ∆tmax ∀k,
xN = xgoal,

where safety constraints (22)—(24) are included in the in-
equality constraint function gk(xk, uk). Note that this is a
free-final-time problem in which the ∆tk are decision vari-
ables in addition to the states and controls. This is necessary
due to the inability of the entry vehicle to reach its goal state
at an arbitrarily specified time. Problem (26) is nonconvex
due to both the nonlinear dynamics, as well as the variable
time between knot points. It is worth noting that, even with
linear continuous-time dynamics, the discrete-time dynamics
constraints (25) become nonlinear when the time step is made
to be a decision variable.

Trajectory optimization problems like (26) can be solved with
a variety of methods. One standard approach is to use an
off-the-shelf NLP solver like IPOPT [10] or SNOPT [9].
Alternatively, more specialized trajectory optimizers like AL-
TRO can be used [22], [23]. While computationally tractable
using one of the described methods, the nonconvexity of
the problem means there are no available guarantees for the
quality of the solution or convergence of the solver. As a
result, running nonconvex trajectory optimization onboard
safety-critical aerospace systems is unpopular, explaining the
prevalence of simpler heritage methods for entry guidance.

4. CONVEX PREDICTOR-CORRECTOR
CPEG combines ideas from numerical trajectory optimiza-
tion with the classic predictor-corrector guidance framework:
It uses a prediction step, in which the vehicle dynamics are
simulated until a target altitude is reached, combined with
a corrector step that is based on solving a local convex
approximation of a nonlinear trajectory optimization problem
to steer the vehicle to the desired target. These steps are then
repeated until convergence is achieved. This section provides
a detailed derivation of the CPEG algorithm.

Prediction and Dynamics Linearization

In the first stage of CPEG, the dynamics of the entry vehicle
are simulated with a standard Runge-Kutta method using the
current nominal control trajectory, Ū , until a target altitude
is reached. We denote this predicted trajectory by X̄ . After
the prediction step, the discrete-time nonlinear dynamics are
approximated using a first-order Taylor series,

x̄k+1 + δxk+1 ≈ f(x̄k, ūk) +Akδxk +Bkδuk, (27)

where Ak and Bk are the following Jacobians,

Ak =
∂f(xk, uk,∆tk)

∂xk

∣∣∣∣
x̄k,ūk

, (28)

Bk =
∂f(xk, uk,∆tk)

∂uk

∣∣∣∣
x̄k,ūk

. (29)

Subtracting the dynamics of the reference trajectory from
both sides, the local linear dynamics of trajectory corrections
can be written as:

δxk+1 = Akδxk +Bkδuk. (30)

A crucial distinction between CPEG and sequential convexi-
fication methods [7], [24], [25], is that trajectory iterates are
always dynamically feasible, thanks to the prediction step.
This eliminates the possibility of inconsistent linearizations
of the dynamics constraints [26], in which no feasible cor-
rection trajectory exists. Specifically, there is always a trivial
solution to (30) of all zeros for δx and δu.

Cost Function

The cost function used in CPEG is comprised of a term that
penalizes the miss distance from the target and a term that
penalizes specified control behaviors. For the penalty on miss
distance, putting a naive quadratic cost on the error between
the final position and the desired position is inappropriate
since it also penalizes altitude errors. Instead, only the
position error projected onto the landing plane is penalized,
effectively ignoring altitude error. Since the altitude target is
implicitly satisfied during the prediction step, this allows for
the correction to only apply changes to the control plan that
minimize the projected miss distance. The cost function for
this projected miss distance is the following:

`miss(δX, δU) = ‖W (rN + δrN − rgoal)‖22, (31)

where rN ∈ R3 is the final position in the reference trajectory,
δrN ∈ R3 is the correction computed for this position,
and rgoal ∈ R3 is the desired final position for parachute
deployment. To project this error onto the landing plane, we
define following projection matrix,

W = I − ppT , (32)

where p is the unit vector normal to the planetary surface at
the target position:

p =
rgoal
‖rgoal‖

. (33)

The second part of the cost function seeks to shape the control
behavior. In the case of bank-angle control, we consider
two different control cost functions that produce qualitatively
different behavior:

`σ,L1(δU) = λ‖σ̇k‖1, (34)
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and

`σ,quad(δU) = λσ̇k
2, (35)

where λ is a scalar tuning parameter. The first cost function
(34) penalizes the L1 norm of the derivative of the bank-
angle, resulting in bank-angle trajectories with a minimum
number of discrete switches. The second cost function (35)
penalizes the square of the bank-angle derivative, resulting
in smooth bank-angle trajectories. For the bank-angle plus
angle-of-attack case, as described in (17), we apply a simple
quadratic cost to the norm of the controlled lift vector, effec-
tively penalizing high angles of attack:

`σα(δU) = λ‖uk‖22. (36)

Constraints

Of the three nonlinear safety constraints, two can be lin-
earized, and the third can be converted to a conservative
convex relaxation. For the heating and dynamic pressure
constraints (22)–(23), a Taylor expansion of each is formed,
approximating the constraint to first-order. From here, a
linearized inequality constraint can be directly included in
the convex correction problem. For these constraints, the
linearized versions are:

[∇Q̇(x̄k)]T δxk ≤ Q̇max − Q̇(x̄k), (37)

[∇q(x̄k)]T δxk ≤ qmax − q(x̄k). (38)

The acceleration loading constraint (24) is nonlinear, but a
conservative convex relaxation can be derived in the form of
a second-order cone constraint. First, the kinematics for the
velocity can be conservatively approximated as the following:

vk+1 = vk + ak∆t, (39)

ak =
vk+1 − vk

∆t
, (40)

ak =
v̄k+1 + δvk+1 − v̄k − δvk

∆t
. (41)

The maximum loading constraint can then be re-written as,

‖v̄k+1 + δvk+1 − v̄k − δvk‖ ≤ ∆t · amax, (42)

which is in the form of a convex second-order cone, and can
be directly incorporated into the correction problem.

The three safety constraints from equations (37), (38), and
(42), are stacked into a generic safety constraint function,

gsafety(δxk, δuk) ≤ 0. (43)

Trust Region

To ensure that corrections are sufficiently small that the dy-
namics linearizations and constraint approximations remain
accurate, a trust-region constraint is added to the convex
correction problem. While standard trust-region methods
apply norm constraints to δX and δU [26], insight into the
entry guidance problem enables a more tailored approach.

The quality of the linearization presented in (30) is highly
accurate for approximating the vehicle kinematics, gravity,
and atmospheric drag, but is much less accurate when ap-
plied to the bank-angle in the bank-angle-only control case.
Therefore, we design a trust region that restricts corrections

to the bank-angle, δσk, given the known accuracy of small-
angle approximations but allows large corrections to the other
states. This approach also allows us to avoid the need to
adapt trust regions inside the solver, enabling faster and more
reliable convergence. We apply the following trust-region
constraints to each corrector problem:

‖δuk‖2 ≤ δumax (44)
|δσk| ≤ δσmax (45)

Convex Corrector Problem

For the case where the entry vehicle has control of only
the bank-angle as described in (16), the convex correction
problem can be formulated as,

minimize
δX, δU

`miss(δX, δU) + `σ(δU)

subject to Akδxk +Bkδuk = δxk+1,

gsafety(δxk, δuk) ≤ 0,

‖δuk‖2 ≤ δumax,
|δσk| ≤ δσmax,

(46)

where the miss cost function is described in (31), and the
bank-angle cost function can be either (34) or (35).

For the case where the entry vehicle has control over both
bank-angle and angle-of-attack as described in (17), the con-
vex correction problem can be posed as:

minimize
δX, δU

`miss(δX, δU) + `σα(δU)

subject to Akδxk +Bkδuk = δxk+1,

gsafety(δxk, δuk) ≤ 0,

‖uk + δuk‖2 ≤ 1.

(47)

These problems can be solved quickly and reliably by stan-
dard conic solvers such as Mosek [27], COSMO [28], and
ECOS [29].

CPEG Algorithm

The full CPEG algorithm is detailed in algorithm 1. The
inputs to CPEG are the current position and the current
control plan. From here, the dynamics of the entry vehicle
are simulated until parachute deployment with the current
control plan. This predicted trajectory is then discretized
and linearized, resulting in dynamics Jacobians Ak and Bk
(equations (28)-(29)). From here, the convex correction
problem is posed given the control configuration and cost
strategy. This convex optimization problem is solved, and
the correction δU is used to correct the control plan. The
prediction-correction steps are repeated until the norm of the
correction being made to the control plan is below a specified
tolerance.

5. NUMERICAL EXPERIMENTS
Parameters roughly matching those of the Mars Science Lab-
oratory (MSL) [3] were used to test the CPEG algorithm. All
scenarios begin at an altitude of 125 km above the Martian
surface with a a Mars-relative velocity of 5.845 km/second.
CPEG was implemented in the Julia programming language
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Algorithm 1 CPEG Algorithm
1: input x0, U . nominal control plan
2: while ‖δU‖ > tolerance do
3: X̄, Ū = simulate(x0, U) . predict trajectory
4: A,B = linearize(X̄, Ū) . linearize about prediction
5: δX, δU = cvx(X̄, Ū , A,B) . solve for correction
6: U += δU . correct control plan
7: end while
8: return U . return updated control plan
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Figure 2. Altitude and downrange distance from the
converged trajectories from CPEG on the three specified
cases. The σL1 case is with bank-angle control and an L1

penalty on bank-angle derivative, σquad is bank-angle only
with a quadratic penalty on bank-angle derivative, and σ + α
is control over both bank-angle and angle-of-attack. Due to

the differences in control authority and cost function, all
three converge on different trajectories that hit the target

position at parachute deployment.

[30], using the Convex.jl optimization modeling library [31],
and the Mosek [27] and OSQP [32] solvers. CPEG was
validated on the following three cases:

• Bank-angle control with L1 cost penalty, denoted σL1.

• Bank-angle control with quadratic penalty, denoted σ2.

• Bank-angle plus angle-of-attack control, denoted σ + α.

For the bank-angle cases, CPEG was arbitrarily initialized
with a constant bank-angle of zero, with noise added to the
bank-angle derivative. For the bank-angle plus angle-of-
attack case, a similar approach was used, but noise was added
to the normalized lift vector. The final converged trajectories
for the three cases are shown in figures 2 and 3. In all of the
cases, CPEG was able to successfully guide the entry vehicle
to the target point at the desired altitude.

Bank-Angle Control

For the case where the entry vehicle has only bank-angle
control, the convergence of CPEG can be observed in figures
4 and 5 for the case with an L1 cost on the bank-angle
derivative, and figures 6 and 7 with a quadratic cost. These
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Figure 3. Crossrange and downrange trajectory data from
the converged trajectories from CPEG on the three specified
cases. The cases with only control over the bank-angle have
to do a bank reversal to hit the target, whereas the case with

control over bank-angle and angle-of-attack is able to
leverage the full lift control to avoid the switching.

plots show the output of the prediction step of CPEG, where
the color of the predictions is blue for the first iteration of
the algorithm and turns purple, then pink for later iterations.

After convergence, the two bank-angle profiles that CPEG
produced for the L1 and quadratic cost functions are shown
in figure 8. The L1 cost on the derivative of the bank-angle
encouraged sparsity in this derivative, resulting in a bank-
angle profile that switches between constant bank-angles. For
the case with a quadratic cost on the bank-angle derivative,
the resulting bank-angle profile is smooth with no discrete
switching behavior.

Bank-Angle Plus Angle-of-Attack Control

As described by the dynamics in equation (17), the control
input for this case is the lift vector itself in the directions
orthogonal to the velocity vector. This allows for manip-
ulation of both the bank-angle and angle-of-attack and is
guaranteed to be within the maximum allowable lift by the
unit norm constraint in equation (47). In this control case,
the control input Jacobian is constant and independent of the
nominal control plan, making the linearization significantly
more accurate than the bank-angle-only case. As a result,
the convergence of CPEG with bank-angle plus angle-of-
attack control is significantly faster than with the bank-angle
alone. The evolution of the predicted trajectories is shown in
figures 9 and 10, with the same coloring scheme as the bank-
angle only section. After convergence, the control inputs
were converted back into bank-angle and angle-of-attack and
shown together in figure 11.

6. CONCLUSION
This paper proposes an improved version of the classic
predictor-corrector entry guidance scheme in which the cor-
rection step is formulated as a convex optimization prob-
lem. Two control strategies were tested with CPEG: bank-
angle control, and bank-angle plus angle-of-attack modu-
lation. For the bank-angle-only case, cost functions that
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Figure 4. Predicted entry vehicle trajectories for the
bank-angle only L1 penalty case, as seen by the altitude and
downrange data. As the iterates continue, the entry vehicle
converges on a trajectory that reaches the target at the 10km

altitude mark.
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Figure 5. Predicted entry vehicle trajectories for the
bank-angle only L1 penalty case, as seen by the crossrange

and downrange data.
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Figure 6. Predicted entry vehicle trajectories for the
bank-angle only quadratic penalty case, as seen by the

altitude and downrange data. The
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Figure 7. Predicted entry vehicle trajectories for the
bank-angle only quadratic penalty case, as seen by the

crossrange and downrange data.
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Figure 8. Bank-angle only control plans for both the L1 and
quadratic cost cases. The L1 cost motivated a bang-bang

switching style bank-angle profile. The quadratic cost
resulted in a smooth and continuous bank-angle profile.

penalized the derivative with an L1 cost and a quadratic cost
were both demonstrated, resulting in dramatically different
optimal bank-angle profiles. For the case with both bank-
angle and angle-of-attack control, the quality of the dynamics
linearization was accurate enough that CPEG was able to
converge on an optimal trajectory in just a few iterations.
An implementation of CPEG running all of the examples
in this paper is available at https://github.com/
RoboticExplorationLab/EntryGuidance.jl.
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