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LOW-THRUST TRAJECTORY OPTIMIZATION USING THE
KUSTAANHEIMO-STIEFEL TRANSFORMATION

Kevin Tracy∗, Zachary Manchester∗

We present a novel trajectory optimization formulation for the low-thrust orbital
transfer problem utilizing the Kustaanheimo-Stiefel transformation. For unper-
turbed two-body motion, this transformation maps the nonlinear Cartesian dy-
namics to a linear four-dimensional simple-harmonic oscillator. When perturb-
ing accelerations are added, the dynamics become nonlinear, but are significantly
better approximated by linearization than alternative state representations. There-
fore, the Kustaanheimo-Stiefel dynamics have strong advantages in gradient or
Newton-based trajectory optimization algorithms. We formulate a low-thrust tra-
jectory optimization problem with these dynamics and demonstrate empirically
that thrust profiles can be found without providing an initial guess to the solver,
and with fewer knot points than alternative state representations.

INTRODUCTION

Low-thrust trajectory optimization has been extensively studied over the past 30 years, motivated
in part by the increasing popularity of electric propulsion systems.1 Many orbital state represen-
tations have been used for this problem, including classical orbital elements, modified equinoctial
orbital elements, and Cartesian position and velocity.2, 3 Unfortunately, all of these representations
result in highly nonlinear dynamics with singularities, and are susceptible to severe numerical scal-
ing issues. Another aspect of this problem that makes optimization challenging is the fact that
low-thrust maneuvers can take months to complete. A common maneuver that this paper focuses
on is the transfer from Geostationary Transfer Orbit (GTO) to Geostationary Orbit (GEO). This ma-
neuver can take anywhere from one to six months, with the resulting trajectory requiring thousands
of knot points to represent numerically.

Due to the problem size and nonlinearity of the dynamics, a sophisticated initial guess is often
required to navigate a cost landscape that is riddled with local minima. The resulting formula-
tions are large, poorly numerically conditioned, and require significant computational effort. These
difficulties have motivated Lyapunov-based online feedback methods, such as those described by
Petropoulos and later modified by Varga.4, 5 These control laws are simple to run on-board, benefit
from closed-form solutions, and are unaffected by the nonlinear/underactuated nature of the space-
craft. Unfortunately, they are generally sub-optimal, and offline tuning of the controller gains can
require substantial effort.

In contrast, our formulation of the low-thrust trajectory optimization problem leverages the
Kustaanheimo-Stiefel (KS) transformed orbital dynamics. Trajectory optimization with the KS
transformation has been investigated by Thorne6 and Hernandez,7 but both cases are limited to
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Figure 1. Top-down view for optimized low-thrust 100-day GTO to GEO trajectory

short-duration in-plane transfers of two-dimensional orbits. This paper treats the full three-dimensional
case. Our algorithm combines the ease of use of Lyapunov-based methods with the performance
and (local) optimality of trajectory optimization for use in three-dimensional orbit transfers involv-
ing plane changes. When compared to alternative state representations, the KS-transformed orbital
mechanics result in better conditioning and fewer knot points, all without the requirement for a
sophisticated initial guess.

Our contributions in this paper are:

1. Using the KS transformation for three-dimensional low-thrust trajectory optimization.

2. A cost function that leverages the mapping between KS state and Cartesian position to per-
form GTO to GEO transfers.

3. Demonstration of reliable convergence to locally optimal GTO to GEO transfer solutions
without an initial guess.

The paper proceeds as follows: The Background section discusses the historical development
of the KS transformation, fictitious time, and the differential equations describing unperturbed and
perturbed orbital motion. The Trajectory Optimization section describes the formulation of our
optimization problem and the cost function used to drive the GTO to GEO transfer solution. The
Numerical Experiments section examines successfully optimized low-thrust transfers lasting 30,
60, and 100 days. Finally, the Discussion and Conclusions section elaborates on the impacts of this
research for mission operations, and the importance of converging without an initial guess.
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BACKGROUND

In 1765 Leonard Euler introduced a linear representation of pure Keplerian motion in one di-
mension,8 achieved by storing the square root of distance from the central body and introducing a
fictitious time that varies with this distance. The fictitious time slows down near perigee and speeds
up near apogee, resulting in a linear simple-harmonic oscillator. The idea was later extended to
two dimensions with the Levi-Civita transformation, representing the spacecraft’s two-dimensional
position as a scaled rotation of the unit-length x-axis.9 This rotation is expressed using a com-
plex number with a magnitude equal to that of the square root of the radius. Finally, two hundred
years after Euler’s discovery, Kustaanheimo and Stiefel introduced the three dimensional general-
ization by expressing the position of the spacecraft again as a scaled rotation from the unit-length
x-axis. Where this rotation was expressed using an imaginary number for the two-dimensional case,
a quaternion is used in the full three-dimensional case.9 The KS transformation maps the full two-
body Kepler dynamics to a four-dimensional simple-harmonic oscillator.8, 10 By relying on the same
fictitious time established by Euler, uniform step sizes can be used for numerical integration, as the
dynamics evolve at a constant rate throughout the orbit. This is a powerful feature, as it allows
for accurate orbital propagation with fixed-step integrators. The uniformity and linearity in the KS
dynamics present significant advantages for optimizing low-thrust trajectories.

Position Mapping

The KS Transform maps Cartesian inertial positions, x ∈ R3, to a quaternion, p ∈ R4. This
quaternion describes the rotation and scaling from the unit-length inertial x-axis to the spacecraft
position vector. Since this rotation is not unique, there are an infinite number of p’s corresponding
to each x, so for the initial conversion, p1 will be arbitrarily set to 0.1. We will use the following
mapping from x ∈ R3 to p ∈ R4:

p1 = .1, (1)

p4 =
√
.5(‖x‖+ x1)− p21, (2)

p2 =
x2p1 + x3p4
‖x‖+ x1

, (3)

p3 =
x3p1 − x2p4
‖x‖+ x1

. (4)

Even though there are four parameters, there remain only three degrees of freedom. Our p parameter
has a norm constraint that relates to the corresponding x:

‖p‖ =
√
‖x‖. (5)

The corresponding inverse transformation is,

x1 = p21 − p22 − p23 + p24, (6)

x2 = 2(p1p2 − p3p4), (7)

x3 = 2(p1p3 + p2p4), (8)

which can be recognized as the vector [0, 0, 1]T after being rotated by a quaternion p.
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Fictitious Time

Before addressing the velocity mapping, the relationship between true time (t) and fictitious time
(s) must be established. Two different derivatives will be used in the following sections, those taken
with respect to true time and those taken with respect to fictitious time. The former are denoted with
a dot,

ż =
dz

dt
, (9)

while derivatives taken with respect to fictitious time (s), are denoted with a prime:

z′ =
dz

ds
. (10)

The relationship between these two is dependent on the distance from the orbiting body to the central
body:

dt = ‖x‖ds, (11)
dt

ds
= ‖x‖. (12)

Using the relationship established in equation (5), we can write the following:

t′ = ‖p‖2. (13)

This relationship allows the eccentric anomaly of a spacecraft in Keplerian motion to progress lin-
early in fictitious time. The resulting orbit can be discretized with equal fictitious time steps, and the
resulting points will also be uniformly discretized according to arc length. In order to keep track of
the true time (t), we append it to the state and propagate it numerically with the rest of the dynamics.

Velocity Mapping

Cartesian velocities expressed in the inertial frame, ẋ ∈ R3, can be mapped to fictitious velocities
of our parameter p:

p′1 =
1

2
(p1ẋ1 + p2ẋ2 + p3ẋ3), (14)

p′2 =
1

2
(−p2ẋ1 + p1ẋ2 + p4ẋ3), (15)

p′3 =
1

2
(−p3ẋ1 − p4ẋ2 + p1ẋ3), (16)

p′4 =
1

2
(p4ẋ1 − p3ẋ2 + p2ẋ3), (17)

where the inverse of this operation is:

ẋ1 =
2

(p T p )
(p1p

′
1 − p2p′2 − p3p′3 + p4p

′
4), (18)

ẋ2 =
2

(p T p )
(p2p

′
1 + p1p

′
2 − p4p′3 − p3p′4), (19)

ẋ3 =
2

(p T p )
(p3p

′
1 + p4p

′
2 + p1p

′
3 + p2p

′
4). (20)

These transformations are unique, and are derived from the relationship described in equation (5).
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Unperturbed Dynamics

For the unperturbed case, the dynamics are conventional Keplerian motion. We refer to the fol-
lowing state vector, XKS ∈ R10, as the KS state:

XKS =


p
p ′

h
t

 , (21)

where h is the negative specific orbital energy:

h = −ε = µ

‖x‖
− ‖ẋ‖

2

2
. (22)

For the unperturbed case, this energy is constant, allowing us to simplify the equations of motion
to:

p ′′ = −h
2
p, (23)

h′ = 0, (24)

t′ = ‖p‖2. (25)

Upon visual inspection, the dynamics for the quaternion p can be identified as a linear simple-
harmonic oscillator. This oscillator is undamped with an effective stiffness-to-mass ratio equal to
one half of the specific orbital energy. The solutions to this second-order differential equation are
sinusoidal with constant frequencies.

Perturbed Dynamics

In order to incorporate perturbations like non-spherical gravity, atmospheric drag, and spacecraft
propulsion, equations of motion that include additional forces must be formulated. For ease of
notation, the matrix function L(p) is defined,

L(p ) =


p1 −p2 −p3 p4
p2 p1 −p4 −p3
p3 p4 p1 p2
p4 −p3 p2 −p1

 . (26)

The perturbing accelerations will be collected and combined into one inertial acceleration vector,
ap. With this, the perturbed dynamics can be written as follows:

p ′′ = −h
2
p+
‖p‖2

2
[L(p)]T

[
ap
0

]
, (27)

h′ = −2[p ′]T [L(p)]T
[
ap
0

]
, (28)

t′ = ‖p‖2. (29)

The resulting equations of motion are nonlinear, but are in a relatively benign class referred to as
”perturbed linear”.10 They behave far better under linearization than other state representations.
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TRAJECTORY OPTIMIZATION

Optimal control problems are often discretized and formulated as numerical optimization prob-
lems with direct transcription,11 where both the states and the controls are treated as decision vari-
ables:

minimize
x1:N , u0:N−1

`N (xN ) +

N−1∑
k=0

`k(xk, uk)

subject to xk+1 = f(xk, uk), k = 0, . . . , N − 1,

gk(xk, uk) ≤ 0 ∀k,
ck(xk, uk) = 0 ∀k.

(30)

Here the states and controls must minimize the cost functions `(xk, uk) and `N (xn), subject to the
nonlinear dynamics, f(xk, uk), and the the constraint functions gk(xk, uk) and ck(xk, uk). Many
software tools exist for converting continuous trajectory optimization problems into this form, in-
cluding GPOPS-II,12 and general purpose nonlinear programming (NLP) solvers like SNOPT13 and
IPOPT14 can then be used to solve them. While these methods have significant heritage, general
purpose NLP solvers fail to exploit many of the unique structural features present in trajectory op-
timization problems.

Instead, the trajectories in this paper are optimized using the Augmented Lagrangian Trajectory
Optimizer (ALTRO),15 which exploits the Markovian structure of (30) for faster convergence. AL-
TRO is based on Differential Dynamic Programming (DDP), with an augmented Lagrangian frame-
work for handling both conic and non-convex constraints. In particular, ALTRO is able to natively
handle convex second-order cone (SOC) constraints without having to rely on linear approxima-
tions.16 This feature enables ALTRO to handle norm constraints on thrust vectors efficiently and
without suffering from numerical ill-conditioning that can occur with alternative methods. ALTRO
can often be orders of magnitude faster than traditional direct transcription approaches.15

Cost Function

For the GTO-to-GEO problem, the spacecraft starts in an inclined elliptical orbit and must raise
the semi-major axis while also eliminating both eccentricity and inclination. While easy to express
in terms of orbital elements, some care must be taken to formulate this cost in terms of the KS state.
The first part of the cost function penalizes deviations from the geostationary orbit radius:

min
x

[(‖x‖ − rgeo)2]. (31)

Driving this cost term to zero achieves both the desired semi-major axis and zero eccentricity. In-
clination is driven to zero by penalizing the z-component of the spacecraft’s Cartesian position:

min
x

[x23]. (32)

These cost terms are convex in terms of x, but the mapping from p to x is nonlinear. To address this,
the state vector will be augmented to include these Cartesian terms, and they will be propagated
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through the integrator. This simply shifts non-convexity from the constraints into the dynamics:

X =



p
p ′

h
t
‖x‖
x3


12×1

=



p
p ′

h
t

‖p‖2
2(p1p3 + p2p4)

. (33)

The cost function can now be computed easily using only the elements in the state,

`(X) = ‖u‖2 + α(‖x‖ − rgeo)2 + βx23, (34)

where α and β are tuning parameters that can be adjusted for each mission scenario.

Finally, because the ALTRO solver only natively supports zero-order hold control input dis-
cretization, we further augment the state vector with an integrator on the controls to better ap-
proximate the continuously moving thrust vector. The controls solved for in ALTRO are now the
derivative of the thrust vector with respect to the fictitious time, allowing the resulting integrated
thrust vector to linearly interpolate between knot points. The full set of ODEs as they appear in the
solver are as follows:

X′ALTRO =



p
p ′

h
t
‖x‖
x3
u



′

=



p ′

−h
2p+

(p T p)
2 L(p)]T

[
ap
0

]
−2[p ′]T [L(p)]T

[
ap
0

]
p T p

2p T p ′

2(p′1p3 + p1p
′
3 + p′2p4 + p2p

′
4)

u′


. (35)

With these dynamics, the final trajectory optimization problem can be formulated as,

minimize
u′0:N−1

N∑
k=1

‖uk‖2 + α(‖xk‖ − rgeo)2 + βx23k

subject to x0 = xinit,

xk+1 = f(xk, u
′
k), k = 0, . . . , N − 1,

‖uk‖ ≤ umax, k = 0, . . . , N − 1,

(36)

where f(xk, u′k) describes the discretized dynamics presented in (35), integrated with a fixed-step
4th-order Runge-Kutta scheme.

NUMERICAL EXPERIMENTS

To demonstrate the numerical advantage of KS-transformed dynamics, the energy behaviors of
three common orbital state representations are compared in Fig 2. A geostationary transfer orbit was
used for the comparison, with the only perturbation coming from J2. All three state representations
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were integrated with 100 steps per orbit, with equinoctial and Cartesian using true time, and the KS
transformed dynamics using fictitious time. This fictitious time allows for efficient sampling of the
dynamics function throughout the orbit. The frequency in which the dynamics function is sampled
is directly related to the speed of the dynamics, with sampling happening more often at perigee
than apogee. The result is consistent energy behavior, even with relatively few knot points. This is
noteworthy compared to the equinoctial propagation that loses energy during every orbit, and the
Cartesian propagation that sees a spike in energy before going completely unstable.

For our trajectory optimization experiments, a 10,000 kg spacecraft traveling from GTO to GEO
was used to explore three possible propulsion scenarios: a 30-day transfer with 1 N of thrust, a 60-
day transfer with 0.59 N of thrust, and a 100-day transfer with 0.32 N of thrust. The starting GTO
was inclined at 27◦, with a perigee at 200 km, and apogee at 35,000 km. Each solve was initiated
with zeros for the thrust controls. In all three of these scenarios, ALTRO reliably converged to a
solution with only this naive guess. We intentionally did not exploit any a priori knowledge about
the solution to warm-start the solver. The timing results for the three solver runs are presented
in Table 1, with all of the examples run on a laptop computer with a 2.5GHz quad-core Intel i7-
4870HQ and 16GB of RAM. The number of knot points and the magnitude of the thrust constraint
were the determining factors in time for convergence, with the 100-day transfer taking the longest
time at 30.92 minutes.

The solutions for all three scenarios are plotted in Fig. 3. In every case, the semi-major axis,
eccentricity, and inclination all arrived to the target values around the same time. There is a tail to
each of the curves that can be seen in Fig. 4 as the time where the thrust is being throttled. For all
three of the thrust magnitudes, the spacecraft is commanding maximum thrust for almost the entirety
of the transfer. Towards the very end of the transfer when the spacecraft is nearly at GEO, there is a
minor tail in the errors on the orbital elements. This is an expected result when using quadratic cost
functions. An example output of the thrust plan from ALTRO is illustrated in figure 5. When looking
at the full thrust plan, it is difficult to identify the true shape of the solution. The two subplots with
closer views show the periodicity of the solution, something that would be a reasonable expectation
for an optimal thrust solution. To give an idea of the sort of shape that one of these trajectories
produces, a top-down view of the 100 day transfer is shown in Fig 1. All of the code to reproduce
these examples is available at github.com/RoboticExplorationLab/KSLowThrust.

Transfer Time Knot Points Iterations Solve Time

30-day 1501 2,763 2.86 min

60-day 2801 6,158 12.56 min

100-day 3501 10,789 30.92 min

Table 1. Timing results for ALTRO to converge on solutions for the GTO to GEO trajectory optimiza-
tion problems of varying transfer time.

DISCUSSION AND CONCLUSIONS

The solution for the 100-day transfer was expressed using only 3,501 knot points. This was
possible for the KS dynamics due to the fictitious time, but would be intractable with other repre-
sentations. For the state representations that use true time, this would have resulted in knot points
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Figure 2. Specific orbital energy behavior for three orbital state representations in
a J2 perturbed GTO. Integration was performed with a 4th-order fixed-step Runge-
Kutta scheme with 100 knot points per orbit. Both equinoctial and Cartesian state
representations see inaccurate energy behavior, with the spacecraft losing energy
when it should be constant. The KS state representation maintains the expected con-
sistent energy despite the large time-steps.

being over 45 minutes apart, and the integration errors near perigee would have made the solution
too inaccurate to be useful. The KS dynamics enable a significantly reduced problem size, aiding in
both the solve speed and numerical conditioning.

A significant contribution of this work is the ability to converge on a low-thrust orbital transfer
without an initial guess. Due to the nonlinear dynamics constraints, low-thrust trajectory optimiza-
tion problems are non-convex. This means that the cost function can have many local minima, with
no guarantee of convergence to a global minimum. In order to aid in convergence to a favorable
minimum, trajectory optimization solvers are often instantiated with a guess trajectory. This guess
normally requires significant insight in to the problem and trial and error to ensure convergence to
a desirable local minimum. Because of this, one trajectory optimization problem can have many
different solutions depending on the fidelity of the guess trajectory. With the method outlined in
this paper, we have introduced a formulation of a low-thrust GTO to GEO transfer that requires no
initial guess for reliable convergence. ALTRO is simply instantiated with zeros for the controls,
and the initial state trajectory is a forward rollout of the dynamics without any thrust. This feature
makes the formulation in this paper attractive for real-time mission planning during low-thrust orbit
raising. During a long trajectory, the trajectory optimization problem could be reliably and effi-
ciently resolved given updated initial conditions to account for potential unmodeled effects in space
missions.
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Figure 3. Orbital elements for GTO to GEO transfers. Target semi-major axis was
that of GEO, and the target eccentricity and inclination were both zero.
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on the shape of the thrust plan.
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