iILQR Tutorial

Brian Jackson, Taylor Howell

Robotic Exploration Lab, Stanford University

July 2, 2019

1 LQR Derivation

1.1 Discrete Case (Regulator)

Tr+1 = Agrt + Brug
1 | NVl
J((L'(), U) = gx%Qfo + 5 Z {Eszxk + unguk
k=1
Using the Principle of Optimality and Pontryagin’s Minimum Principle, we can compute the optimal cost-to-go
Vie(zr) = %kakxk by working backwards from the boundary condition/terminal cost.

1 1
VN(JZN) = ixjj\}foN = ile\}SNxN

1 1
Wnoi(ezn-1) = nin ixﬁ_lQwaNq + 5“%_1RN71UN71 + Vn(zn)
N-—-1

1 1
= Inin §$71\}—1QN—1$N—1 + iuﬁ_lRN—luN—l + Vn(An—12N-1 + By_1un_1)
N-—-1

o1 1 1 T
= min §$71:7—1QN—1117N—1 + §Ug_1RN—1uN—1 + §(AN—1$N—1 + Bn-1un—1) Sn(An—12n-1+ By_1un—1)
UN -1

1 1
= min —z%_ Qv 181+ zuk_Ry_1un_1
un—1 2 2
1
+ 3 (N1 AN_1SNAN_1ZN—1 +uly_1 By _1SNBy_1un—1 + 2N _ AN _1SnBy_1un—1 +un_Bh_ SnANn_1
(1)
Using Pontryagin’s Minimum Principle we can solve for the optimal control for a single time step uy, instead of the
entire control sequence U.

ov
e Rx_1un_1+ By_SyBy_1un_1+ By_1SvAn_12n-1 =0
(2)
u’jv_l = _(RN—l + Bjj\}_lsNBN_l)_1317\;_1SNAN_1$N_1

=Ky 1on-1
The optimal control can be substituted back into the above equation to compute the optimal cost-to-go
1

Vn_oi(zn—1) = §$%71QN71-TN71

T T
2$N71KN—1RN71KN7155N—1

1 T
+ §<AN—11'N71 + By_1Kn_12n-1) Pyv(An—12n-1+ By_1Kn_12n_1)
1 _
= §$%71 (QNA + K& Rn_1Kn_1+ (An—1+ By_1Kn_1) 'Sn(An_1 + BN—lKNfl))fol

= §xN—ISN—1$N—1

3)

2 iLQR Derivation

We first start the derivation by setting up the problem by defining the dynamics, cost function, and cost-to-go
variable.

2.1 Discrete Dynamics

The dynamics are typically provided as differential equations. In order to apply iLQR, the dynamics must be
discretized with an appropriate quadrature rule (more details to follow in Section ?7). Here we assume general,
non-linear, discretized dynamics:

Tt = f(@k, ur) (4)
which we approximate with a first-order Taylor-series expansion about nominal trajectories X = {xq,...xn},U =
{U(), "'7UN—1}:

of of
Tpt1 + 0xp11 = fag + ok, up + dug) = fag, uk) + = (x — o) + = (u—ug)
a.’L' T, Uk au Tk, Uk
orp1 = A(xg, ug)dxy + B(wk, ug)dug (5)

where A = % and B = %.

2.2 Cost Function

Most cost functions used iLQR are linear-quadratic cost functions. However, if the cost function is not linear-
quadratic, a second-order Taylor Series Expansion can be used to linearize the dynamics into a form common
for optimal control problems (note that constant terms are intentionally dropped as they have no impact on the
minimization):

N-1
J(xo,U) = Ly(xn) + D Lwk,ur)
k=1
N-1
T T 1 T 1 T 1 T 1 T 7T T T
TNQNTN +qnTN + Z 5Tk Qrxy + 5 Uk Biun + Sk Hig + Sup Hy @ + G T + 7 Uk (7)
k=1

~
~

DO =

For the we define a few variables of convenience (— indicates equivalence for quadratic cost function):

or
by = 7 — QkTk + gk
T lxg,up
or
b, = — — Rrup + g
au Tk, Uk
2
gmm = ﬂ — Qk
83;2 Tk, Uk (8)
by = 3725 — R
uu = 8u2 — k
0%
by = H
8:1/'8'“ T, Uk - k
0%l
= HT
ZUI auax T, Uk - k

With a given cost function, we can apply Bellman’s Principle of Optimality to define the optimal cost-to-go Vi (z)

by the recurrence relation:
Vy ={s(zn)
Vi = min{€(zy, ur) + Vi1 (f (2x, ur)) } 9)

Vi = Hluiﬂ Qr(zr, up)

We approximate the cost-to-go function as locally quadtratic near the nominal trajectory:

1 7 0%V
Vi +0Vie = Vi(ag + 0z) = V(z) + 9 s (x — k) + 5(33 — k) 92 mk(ﬂf —)
(10)
1
5Vk<$k) = ska + 51‘{5]@33/9
Similarly:
Qk + 6Qk = Q(zk + 0z, uy + du)
N oQ oQ
~ Q(ok, ug) + P xkuk(m xr) + B xkuk(u u)
L 79°Q 1 70%Q
R) B R i
1 r 9°Q 1 7 0%Q
+ 5(16 — Uk) E - (il' — "Ek;) + 5(1’ - xk) 9zou _— (u — uk)

6uk: qu sz 6uk Qu 5uk

We define the following variables using matrix calculus :

a3 o] [8]] + (&[]

Qz =y + Sk414k

Qu =ty + sk4+1By
Quz = luw + A Sk1 4k (11)
Quu = luu + By Sk41By
Quz = luz + Bl Sk1 Ay

and using the fact the Q.. = QT,,.

which gives us all the values needed to calculate the next step. We can show this by combining Equations 11 and 12:

2.3 Cost-to-go at terminal state

By following a dynamic-programming approach, we can solve the tail problem for Vi (z) for a problem with N time
steps. In order to solve the detail we define §V as the deviation from the optimal value: with sy and Sy defined as
follows, given the cost function in Equation 7:

TN

= (5w Qs —)|,
o 1 . 1,

= %(595 Qrx — fofx—i— §fofa?f) »

=Qsrn — Qfry (Qr =Q7F)
=Qylen —zy)

0%V
0x?
= 5% (Qf(z —zy))

=Qy

N

SNE

TN

’:CN

2.4 Solving the Dynamic Programming Problem

After solving the tail sub-problem, we can then apply the principle of optimality and define the process for solving
for the kth time step given the values at the k + 1th time step.

Vi = H;ikn{é(l‘k’ ug) + Vi1 (f (2, uk)) }

= H&in{Qk(zkv ug)}

oV = ngin{&Q(x, u)}

Hgin{Qméx + Quou + %(SSCTsz(SLL‘ + %5UTQM5U + %&sTQm(;u + %<QMM;}

20Q 1 1y -

— ou* = _Q;}(Quz&ck + Qu)
=Kéx+d

So

dk = _Q;}Qu
Ky = _ngqu

After calculating the optimal control as a function of the next time step we can plug it back into Equation ?7.

_ 1 oy, g Qo Quu oxy, Qz r 0xk
0Qk(wk, uk) = 5 {Kdm + d} [QW Ouu| | Koz +d| T |Qu| | Koz +d
By equating the result with Equation 77 we get

1
AV = EdTQuud +d'Q,
5= Qu+ KTQuud + KTQu + QL.d (12)

2.5 Forward Pass

Since the dynamics and the cost function are only approximated at each time step, it is necessary to iteratively
solve the previous problem to successively get closer to the local minimum. After each backward pass solving for
the optimal correction in control values, du}, these values are used to calculate a new state trajectory (X) from the
nominal trajectories X, U, often referred to as a “rollout”. The « term is used for a line search. This is done using
the following algorithm:

0x =z, — T,

ug = Uy, + ouj,
= uy, + Koz + ady,

Trg1 = f(r, up)

where « is the step size, typically used to perform a simple line search (see Section ?7).

2.6 Square-Root Backward Pass (V3)
2.6.1 VA+VB—A+B

a.r=a(V2))
R=VA+B

2.6.2 Method

We approximate the state-action cost-to-go Q(x,u) using a second-order Taylor series expansion:

1[62]" [Que Quu] [02] | [Q2]" [02
o =35l (o ol] <[] [

The terminal cost-to-go Hessian and stage costs are factored:

Sy = /Sy /S
Li=TLu vLi

This factorization can be performed using Cholesky (or LDL) decomposition
The backward pass is modified with the diagonal blocks of the state-action cost-to-go Q(z, u) factored as follows:

me =V LIIT V Lzz + ATS/TS/A = [\/ La::z: S/A]T |: SI//Z:E

Luu

Quu =V LuuT V Luu + BTS/TS/B = [\/ Luu S/B]T |: S'B

We can factor Q.. — \/QMT\/QM using the above technique:

,@QR([@)

Similarly for Q.:

YV Quu = QR(|: S%éu)

The gain K = —Q,,!Qu. can now be written in its square root form:

K=- V Quuil V QuuiTQuw

The gain d = Q! Q. can be written in its square root form as well:
—1 -T
d=— V Quu V Quu Qu
The gradient of the cost-to-go s = Q, + KT Quud + KTQ, + QL. d can be expressed as:

s = Qz + (KT V QuuT)(V Quud) + KTQu + Q;l;zd

The square root of the Hessian of the cost-to-go S = Qup + KT QuuK + KT Que + QuaT K is derived:

o [1]" [Que Qu][I

|:Qac9c Qacu:| _ |:aT Onxm:| |: «@ 5:| _ |:O‘TO‘ O‘Tﬂ
Quz Quu N ﬁT "YT 0 B ﬂTOé BTﬂffYTfY

mxn Py

Q= wa
B=v Q$$7TQU'73
Y= \/\/ QuuT V Quu — BTB

5=l 1A

_|a+BK
= K

Note: that S € R™" +/S € R(mtm)an anq VSn[ln,1:n] = chol(Sy)

2.7 Regularization

Due to limited numerical precision, it is common for @, to become not positive definite. To address this problem,
regularization is added in a way that is equivalent to using trust region methods. Additionally, there are two options
for regularization. The first penalizes deviations from a control trajectory and the second penalizes deviations for
the state trajectory.

Option 1:
K= 7@;1}@11,.@
1 T T
§=Qr+ K" Quud+ K"Qu+ Q.,d
Option 2:

qu =Ly + BT(S/ + PI)A

K= *Q;}Qur

1

s = Qz + KTQuud + KTQu + szd

Note the subtle but very important distinctive use of @, and Quu (and QW) The former is used to estimate
the cost-to-go and is propagated backward, while the regularized versions are used to compute the optimal gains.

Generally, the second option is more robust and is preferred.

3 Constraints

3.1 Augmented Lagrange Method
In order to solve systems with equality and inequality constraints we define a new cost function:

N-1

LA(IOa Ua Hy A) = gf(xN) + Z {Z(Ik,uk)}
k=1
N-1

1 1
+§CN(.%'N)TIMNCN(!EN) +)\ZI\}CN(.%'N) + Z {§Ck(1'k, ’IL;C)TI‘L”“Ck(.%']€7 Uk) +)xfck(xk, uk)}
k=1
We define a single equality constraint as:
ci(z,u)=0,i€&
. eCHelR
and a single in equality constraint as:
ci(z,u)<0,ieT
. eChelR

using subscripts to denote time index and superscripts to denote a particular constraint. The vector ¢, € IR? is the
ordered (equality, then inequality), vertical concatenation of all p constraints at that time step.
The matrix I,,, € IRP*P is used to turn on and off feasible inequality constraints and is defined as follows:

L. Ji,i pio ifany: i €&, ¢ €T >0, >0
i,1) = .
o 0 otherwise

The update for X is defined as follows:
Mo = Mg + i (wr, ug) i € €
Ny < max(0, \i + pbch (vn,up)),i € T
3.2 Modification to Backward Pass
To account for constraints in the optimization, we modify the backward pass as follows:

Qm =Q,+ cf[uc + cf)\

Qu=0Qu.+ cf]ltc +cI'A
Quz = Quz + L ey
Quu = Quu + 4 Ly
Que = Qua + L Ic,

where ¢, = % wu, Cuy = %H,u Additionally the boundary conditions Sy, sy are augmented:

T
Sy =Sy + ConLun Con

T T
SN =8Nt lunven + AN

The backward pass can be performed as before using these augmented versions.

4 Infeasible Initial Trajectory

Given a desired state trajectory Xg : {z4,,...xq, } we must find a set of artificial/slack controls U; : {uw;,,...u;, ,} to
achieve this state trajectory despite the system dynamics. At each time step we solve for u;, :

Try1 = fog, ug) + u,
St Tpt1 = Ty

— Uy, = Tdpyy — Thtl
Before simulating the dynamics at the next step remember to apply the artificial control we just calculated: 414+ =
'U'ik
5 Minimum Time

6 Taylor Series Approximation

Throughout the following derivations we use Taylor polynomials to approximate nonlinear functions. We are typi-
cally interested in first or second order approximations of nonlinear functions of two variables, the state and control.
The following derivations may prove helpful.

A second order Taylor Series approximation of f(x), a nonlinear scalar valued function that is dependent one
variable (z € R) and linearized about Z (which is not necessarily zero):

flz) = (13)
2
f(.f-i‘al')%f(.f)—kgi(x_j)_F%% i(x_j)2 (14)
0 H?

A second order Taylor Series approximation of f(x), a nonlinear vector valued function that is dependent one variable
(x € R™) and linearized about Z (which is not necessarily zero):

f(@) = »
0 92
fo+ o)~ 1@ + | @)+ re- T2 @ -

The most complicated approximation we perform is a second order Taylor Series approximation of a nonlinear
function f that is dependent on three variables. The procedure is the same as before:

Fay.2) -

f(Z+bx,5+ 0y, z+dz)

~f@p+ G| @-n+ | wen+g| -2

= W R VR VR R e | e
%(I B j)Taaxz(r“])cy z,g,z(y —0+ %(z -2 889:(;; nz,g,z(z -2

—|—%(z -2)" 8822(;; i,gj,i(x -+ %(Z B Z)Ta(jéfy f,y,i(y -9

7 Appendix
7.1 Square-Root Backward Pass(DONT USE)

It is common for S to become ill-conditioned, which causes numerical instability when performing the updates in (19).
This can be quantified using a conditioning number, which is a ratio between the largest and smallest eigenvalues of
a square matrix [Kaminkski’71] To alleviate numerical issues, we can derive a backward pass using only the square
root of S, defined as S = LL”, where L is the is value to be calculated and propagated backward in time. This is
done by using the a factor of S when calculating K, d, s, S (and Q) during the backward pass. To reduce visual
noise, we drop subscripts and define S, = S and Sy 1 = S. We also define A=T = (A~1)T.

K = QuuQuz
_ (zw + BTSB) “'BTs4

= (S‘l + BK;}BT) 71A (Matrix Inversion Lemma?)
= (L’TL’l - Bé;}BT>71A (A™NT = (AT)"1, § = LL")
= (BT (LT L 4 LTI B BTLLY) A (AA-1 =)
= (oA BT [L7T (14 LT BU BT D)L A (Factor out L~ (left), L~" (right))
K= f;}BTL(I + LTB&;%BTL)ALTA (ABC)™' = c—'B~1A1)

In order to calculate d we will first calculate @, in terms of the factored S:

=BTLL"B + LpL}% (S = LL"T, Ly = chol(R))
=MMT
where M = [BTL Lg]
= QRR"Q" (Q, R =Qr(M))
Lq,. LTM =QDQ" (D is a diagonal matrix)
!
Lq,, =QD'?

With Q.. factorized with respect to L we can compute d in terms of L:
—1AT
d = Quu u

= (LQM ng> _1Qu

Next, we can calculate S:

S ="ty + ATSA, — ATSB(4y, + BTSB)'BTSA

= AT(S71 + Bel BTY' A+ 0,, (Matrix Inversion Lemmal)
A(S — lyy) AT = SV 4 Be I BT (Re-arrange and invert)
=L 'L 4+ LTI BL L BT LL ! (S=LL",Lr = chol(fy,))

=L T(I+L"BL"Ly'BTL)L™!
=L T(I+GG"L™!
where G = LTBLI}T7 G e R™™
S=ATL(I+GGT")'LTA+ 1y, (Re-arrange and invert)

= AL +WAWD) LT A+ 4y, (WAWT = LDL(GGT))

=ATLWWT + WAWT) LT A+ 0, (WWT =1,W is orthogonal)
=ATLWI+ AW TLTA+ 0, (Factor out W, WT)
=ATLW =TT+ AN WLTA+ 0,
=ATLW({I + M) WITLTA+ ¢, (WT = W~ W is orthogonal)
= ATLW (I +A)"Y2(I + A)TVPWTLT A+ Lol (Lg = chol(fyy))
=MM"
where M = [ATLW (I +A)~Y% Lo
= QRRTQ" (Q, R =QR(M))
T —vbpvTQT (V, D = LDL(RR™))
1
L=QVD'Y?

Finally, we can calculate s:
5=Q.—K"Qu+K"Ql,d—Qy,
=Q, — (B"SA)"(¢y, + B'SB)~ TQu + (BTSA) (byy + BYSB)'Q, — (BT SA) (4, + BTSB) Q.
=Q, — (BTSA)T(ty, + BTSB)"TQ, (ABC)T = CTBT AT)
=Q, — ATS"B(ly, + B'SB)~ TQu

= — AT (S + BK_TBT) B(;TQ, (Matrix Inversion Lemma?)
= Q. —AT(LTL T 4 BeT BT)_ BL;TQ, (A~1T = (AT)~1, § = LLT)
—Q, - AT(LT+ L*TLTBE;EBTLL*) BT, (AA~1 = 1)
~=Q, - AT[T+ LTBe;T BTL)L—I} BT, (Factor out L~7 (left), L~" (right))
5=Q, - ATL(I+ L"B;'BTL)'L"B;TQ, (ABC)"' =cC~'B~'A™Y)

NOTE: chol(A) is the Cholesky decomposition, A = BBT | LDL(A) is an orthogonalization of a symmetric matrix,
A = LDL", where L is an orthogonal matrix and D is a diagonal matrix. This factorization is most easily accom-
plished using the eigenvector decomposition, where L is the matrix of eigenvectors of A and D is a diagonal matrix
comprising the eigenvalues of A. QR(A) is the QR decomposition of A. Matrix Inversion Lemmas:

-1
(A + Ucv) — A A‘1U<VA‘1U rohya
-1 -1
(a+vev) ve=atu(ct+vaiu)
The algorithm for the square-root backward pass:
G=LT"BL;"
W, A = LDL(GGT)
M= [ATLW(I +A)~Y? Lg]

V,D = LDL(RR")
L=QVD'?

7.2 L derivation for FOH

Ly =4AMTLT M, + L,

10

Loy = 2M{EL™, +4M L™ My + L,
ny = MITLZ;
Lyy = 2M, LT,

Lyy = L™, +2(MIL™ + L™ M) +4Mo L™ My + L,

U

1
Ly, =-L" +MIL™

2 uxr
Lus = Ly, +2M; LY,
1
Lyy= L5+ L3,
4
1
_ m +

LUU - L'Zlu + Lju

Ly =L"M + L

1
L,==L"+L"M,+L;

2 u

1o
L, =L} + L

1 m
L= 3Ly + Ly

7.3 Verbose iLQR derivation

Vi + 6V, = min fk(l‘k + oz, up + (5uk) + Vit (f(l‘k + 0z, uk + (5%%))

Ug,0Uk

~ m(isn Uz, ug) + lo(x — zk) + Oy (u — ug)

1 1
+ i(z - a:k)Tém(:r —xp) + §(u — uk)Tfuu(u — ug)

1 1
+ i(u - uk)Tﬂum(x —) + i(x — xk)Tﬁm(u — ug)

1
+ V(Zrt1, Uht1) + Sk410Zk41 + §5$k+1sk+15mk+l

= minl(xg, ur) + V(Tpt1, Ukt1)
ug
1 1
+ rglinﬁmdxk + £, 0uy + iéxffm&vk + iéuzﬁwduk
ug
Lo Lo
+ iduk lyzdzxy + iéxk L Oug
1
+ Sk+10Tk41 + §5$k+15k+15$k+1
_ 1., 1.
oV, = rgun +l 0z + £, 0u + §5ack lyprdxy + 561% Ly O,
ug
Lo Lo
+ §5uk £yz0xr + iéxk £ U
1
+ 8p4+10Tp+1 + §§xk+15k+16xk+1
1 1
= 1&1]{1 bp0xy, + £, 0uy + 5590%&”596;6 + §6u{€uu§uk

1 1
+ §5ug€uz5xk + iéxz&wéuk

(Taylor series expansion)

(Separate minimizations)

(Cancel terms)

(Plug in dynamics)

1
+ Sk+1(A(5$k + B(SU}C) + §(§U£BT + 5${AT)S]€+1(A§LU]€ + Béuk)

11

= rglin (61 + skHA) oxy + <€u + sk“B) oug (Combine Terms)
1 1
+ 50af (zm + ATsk+1A) by, + 0uf (ew + BTSkHB) Suy,

1 1
+ 0ul (em + BTSkHA) by, + 0] (em + ATSkHB) Suy,

7.4 (

unnecssary plug in for s,S)

Sk = qk + Sk+14x — (G + Sk+1Br) (Ri + BJ Sky1Bi) ™' (B Skt14k)

_ (19)
Sk = Qi + AL Sp11 A4y, — AL Ski1Br(Ry + BE Sk1By) ' Bil Siy1 A

which is easy to verify that all values are either functions of the current state and control (subscripts k), or are
from the next time step. By working backwards, the Sy, sy, and uj, values can be calculated for each time step.
subsectionincorrect foh derivation

7.4.1 Simpson Integration of Stage Cost

The first step is to express L(xg, Uk, Tm, Um, Th+1, Uk+1) as a linear expression of (zk,up,Tgt1,urs+1) by finding
expressions for (z,,,u,,) in terms of the other variables. Hermite-Simpson integration performs the following ap-
proximation:

() = / e wdt (20)

tk
~at® + bt +c (21)

Without loss of generality, we assume knowledge of the points (xy, uk, Tr41, uk+1) and assume t = 0,141 = dt. By
specifying 3 known points we can solve for the coefficients (a, b, c). We pick the points xg, Tx11, Tk = f(Tk, ur):

Tk 0 0 1f |a
T | =10 1 0] b
Try1 de* dt 1] |c
23
. (23)
=T b
c
Solving this linear equation gives
1
a = @(71% — Tpdt + xk—i—l)
b=y (24)
C = Tk
We can now calculate x,, by evaluating the spline (Eq. 22) at dt/2:
a
T = [%dt*> Ldt 1] |b
c
Ty
= [1dt> Sdt 1) T7'| iy (25)
Tk4+1
1 Tk
Tr+1

12

which can be verified by either plugging in the expressions for a, b, ¢ in Eq 24 or using a symbolic solver (e.g. SymPy).

In order to express [x) @x Tr+1]7 as a linear expression in the desired variables, we need to perform a 1st Order
Taylor-Series expansion of the dynamics:

e of
x+§x~f(x,u)+%§x+ 9

= f(z,u) + A(z,u)dx + B(x, u)du (26)

ot = Az, u)dx + B(z,u)du

It is important that these Jacobian matrices are distinct from the ones for linearized discrete dynamics in (43). These
Jacobians are calculated on the continuous dynamics equation.
Using this result we can now express the following:

Sy, I, 0 0 0 gff
dix |=|A B 0 0 M’“ (27)
5 0 0 I, 0 h
Thk41 §uk+1
where I, is an n X n identity matrix and I,,, is an m X m identity matrix.
We can now define the following;:
I, 0 o o] | %%
1 (5uk
mm:f[B dt 1] A B 0 0
4 0 0 1, of [2n
" OUk41
5.rk
1 ouy,
=-13l,+dtA dtB I, O 28
4 [A] 0%k41 (28)
OUk11
517k
_ 5uk
N 0T k41
OUk41

With an expression for z,,, all we need is an expression for u,,. This expression is obtain using a simple interpolation:
Uy = %(uk + ug+1). Using both of these relationships we can can convert between point sets:

oy, 1, 0 0 0
6uk 0 Im 0 6xk
0T, . [M] duy
Sum |~ [0 2 0 L [dwkp
0Tp i1 0 0 I, O] |dugs:
U1 0 0 0 I, (29)
51‘k
5uk
=F
0% p41
OUk41

13

7.4.2 Approximating Stage Cost

We can find a quadratic expression for L(zy,ug, k11, ux+1) by taking a 2nd Order Taylor Series Expansion of the

integral term in (41):

0xy, r L;I L;u 0xy r
ouy L;w L;u ouy
dt | Sz, AL™ AL™ 5% m
=G | Gum ALY, ALY, St (30)
Skarl Lgx L;u 6‘rk+1
(SukJrl LI{L’ LIu (sukJrl
(51‘k r
6uk
dt - _ _ m m 0T,
+5 e Lyoany oanp Lf L))o (31)
0T k11
k1
T Ly L,
oxy L;z L;u oz
o dt | duy T 4Lt 4Lm, ouy,
=% loon| ¥ AL™ AL™ St (32)
6Uk+1 L;w L;—Ei_u 6uk+1
L+ Lt
51‘k
dt Sug
— Lz Lz 4L™ 4L™ L+ LflE 33
+ 6 [T u T u x u] 6$k+1 ()
FUt1
where L, := %, Ly, = gié,Lm = ‘gi—ﬁ, etc. and L™, L™, L™ are the partials evaluated at (g, ur), (Tm, Um), (Tha1, Ukr1),

respectively.

Using a symbolic solver or chugging through the matrix multiplication by hand we arrive at the final expression for

L(-Tk,Uk,l‘k+1, Uk»+1):

7.5 Calculating P

Once we have 6L, we also need §P from Equation ?? in order to calculate the elements of @ in Equation 51. We
simply plug in the linearized discrete dynamics (Eq. 43) into our cost-go-to for the next time step:

1y (S Syl [y 5y
§P(6y75U) D) |:§U:| |:Svy Spul |60 + [Sy Sv] Sv (34)
_ 1 T
5P(0, bu, 6v) — : [A(Y:c + B;iu + 050} [gzz gzﬂ |:A511 + B;(Zu + C’&J] (35)
Adx + Béu + Cév
+[Sy S [50]
L [02] 7 [Goe Gow Gao] [02 oz
= - |du Guzr Guu Guv| |0u| G+ [Gr Gy Gv] ou (36)
ov Goz Gou Goul| |60 ov
Gow = ATSyyA
Guu = BTS,,B
Gm; == CTSyyC + CTSyv + SvyC + va (37)

Gpu = ATS,,B

14

Gepo = ATS,,C + ATS,,
Guw = B'S,,C + B'S,,

G.=S,A
G, =S,B (38)
G, =S,C +8S,

7.6 Calculating the Gains
With L and P we can now find the partials of @ in Eq. 51.

5Q(x,u,v) = §L(6x, Su, 6v) + 6 P(Sx, Su, 6v)
4T

1 (6 ox 1 (6 r ox ox ox
=3 ou| H [dul| + 3 ou|l G |ou| +h |[du|l +g |du
611 ov _51} ov ov ov
1 r52] " ox | ox
== |bu| (H+G) |ou|l +(h+g) |du (39)
2
(51) 51)_ ov
1 _(SJJ_ ’ sz Qzu va ox ox
_5U va Qvu vi ov ov

me = Hacy + Ga:y
etc ...

However, we need S in its square root form U. To accomplish this, we perform recursive rank-1 downdates on
W using the rows of W, 1Q... An example of this process in Julia:
U = LinAlg. Cholesky (Wxx, ’U’)
tmp = Wuu’\ Qux
for 1 = 1l:size(luu,l)
U = LinAlg.lowrankdowndate (U,tmp[i ,:])

end
U =TU[:U]

1 1. .
OV (zr) = Quoxy + + géaszméxk + iéukT,Qw()uk

1 . 1.+
+ 56’LL;‘CquOIk + 5(5;1‘,{. QL ouy,

1 1 . . .
6Vk = Qz(sxk + + 5(5%‘%62%@63?]@ + 5(_(2;5((21{ + Qu:lréajk))l Quu(_Q;ul(- 111 + QUCL'(S‘T]{))
1 o - 1. + -+ o o
+ 5(—@;&(@5 + Quadzr)) T Quadzy + 5();171{_ QL (—Qu (Q + Quady))
= Qz(sxk -

1 1,
+ géwaméxk + Q(ox[(gf,, + Q)R (QF + Quadzy)

1)) 1, i , i
+ i(f(gu(g;j Quadzr — 021 QL QT Quadxr) + 5(—0zF QT Q1QT — 621 QT Q1 Qupdy)

= C)L(Sva -

1 | P o e L i
+ §6$£Qltérk + 5(67f Qﬁ,:th'll’lf i 111 + Q’MQ’mf i 111 + 67f Qi,ith'{l’lf Q'll,fl?(s"rk + Q’ll Qu,uj Q’u,:l,‘()x/w’?)

15

1
(62“(21111 (b)lll()lli 701% (2111621111 62111()1/\) + 7<7()I/\ (2111(21111(211 o OIA (2111(21111(2“1()”\)

=— (Qu Qui QD) + (Qn - + QuQi Que — 1QuQ1 Qua)0z
+ 5‘rk ((er + (2111(21111 (JUT - 2(2111 (211u (zur)(sxk

= _§(QuQ;u u) + (Qz - QuQ;}Quz)éxk + %5‘%%(6211’ - ua:Q Qur)(sxk

7.7 Active Set - Second-order Multiplier Update
[See: Constrained Optimization and Lagrange Multiplier Methods (Bertsekas 1996, Chapter 2.3)]

At each iteration of the backward pass we solve the following minimization:

. 1
min La(xg, ug, \e) = L(zg, ur) + Vg1 (Tp41) + §Ck($k7uk)Tfuk0k($k,uk) + M ex (g, up)

Tk, Uk

Where L is the stage cost and may incorporate infeasible or minimum time costs.

For notational convenience we define z; = [zg,ur]” and Q(z) = L(zx) + Visr1(2k41). Active constraints are
denoted with a bar, for example: ¢. All equality and any violating inequality constraints are considered active.

Solving for the KKT conditions:

0Ly 0Q e’ el
8z 0z 0z 0z

0L A
ON

Taking the first order expansion of the KKT conditions:

0L 0L 0 0Ly 0 0L,
0. lek,)\k + @(W)‘Zk,)\ktsz 5(@)\%&5}\
0L 0L 0 0Ly 0 0L,
o lek,)\k + &(W)‘Zk,)\ktsz a(ﬁ)‘zk,)\k(S)\
The partial derivatives:
oL oQ o’ oe”
8zA = g'zkﬂ\k + (&)\k)|zk>>\k + (32 Iﬂkc)|zk7)\k
0Ly
o ¢
9 OLay D Wayr_ ¢
9z ON ' OX 9z) 9z M
0 ,0L, 0%Q geT . oe
&(82) 8 2|Zk Ak+(8z Iukaz)|zk Ak

9 Ly,
a(ﬂ) = Opp

% o] o)
55 Opap) 0N —¢

16

Forming the ... system:

ocy s, ot OL A

oAN=———
072 82 0z
oeT
== 5y =
0z =
If L% is invertible and 2 is full rank then the syst b lved. P Itiply the first tion b 92 9L% _1'
5.5 32 ystem can be solved. Premultiply the first equation by §= =4

de 0L ‘1a£25 aaazi,‘laaTM oc oLy oL,

0z 022 922 + 8z 022 0z T 0z 922 0z
dcoLy tocT | 9coLy T oLa
0z 022 Oz 0z 022 Oz
r= (0L Ly DeOLLTIOLs
0z 022 Oz 0z 022 0z
This result can be used to update z:
s, 0Lh 0L
022 0z
Finally, the active-set second-order multiplier update is:
veocy ‘oeT _, 0coLy 'oLa

— e el 1z_ 7% it
Akt1 = A+ (32' 022 0z)l 0z 022 0z e

8 First Order Hold iLQR

This Differential Dynamic Programming formulation of the discrete optimal control problem includes Simpson
quadrature stage costs, first-order hold controls, infeasible controls, minimum time, and general nonlinear equal-
ity and inequality constraints to solve the following problem:

min Cr(x(ty)) —I—/O fﬁ(m,u)dt

u,t f

st () = f(z(t), u(t)) + ui(t)
max 0 S t S tf

Converting to discrete time
. 9 4 1 9
min ~(zN) + g h Uz, up) + é(a?m,um)Jr é(xk+1,uk+1))+h R,
Ui:N

st Tpyp = fd(mkauk>uk+1) + U,
Tmin S Tk S Tmazxs Vk =]., 7_ZV

Umin < Ug < Umaz

17

hk(xk,uk) =0
gk (g, u) <0
L =0Vk=1,..,N—1

K3
Vdtmin < by < Vdbpas

By = hyps1,Vk=1,...,N — 2
IN =XTf
Tr1 = X9

We form and solve the following Augmented Lagrangian:

N1
1
L(z1:n,U1:N,) = 5(931\1 —)T Qs(zn —xy) + Ly (xk, up, T, Uky1)
=1
N1
+ R, h*?
s
N1

T
uik Riuik

+
N
DN | =

ol
Il
_

T T
c(@h, Uk, Thog15 Uy 1) Ly, (Ts Upe, Thg1, k1) + Ap (T, Upe, Thog1, Ukt 1)

WE
Do =

1
+§C($N, un) "Iy c(zy, un) + Aje(zn, uy) +

=1
We define:
h2
Ly (g, up, Ty, Ukg1) = 5 — Uk, uk) + 4@,) + U xpt1, Ukg1))
1(n)+ h? h?
Tm = =\T X — T — —X
5 @k + Tht g Tk~ gkt
Uk + Uk4+1

Um =

2
hy = \/dty,
le
]

With infeasible controls the dynamics become:
Try1 = fa(@r, k, uktr, b)) + ui,

Constraints are defined as:
Uk — Umax
(hk: Y dtmax)[k 7& N]
Umin — Uk
(\/ min hk)[k 7£ N}
Lk — Tmax
Lmin — Tk
Cr (xkn Uk;)
cg(Tr, ug)
Uiy, [k 7é N}
(hk - hk;,_l)[k‘ <N — 1]_

C(Ikv ak: Th+1, ak-‘rl) =

18

where the horizontal line indicates the separation between inequality (above) and equality (below) constraints.
Gradients - -
Oﬁlxn
Oﬂ1><n
I,
Vo, €Tk, Uky Thy1, Upy1) = —Ip
Vaer(Ty, uk)
Vacp (T, ur)
len

1

M (7, m) [k#£N] 0rT1><n
T M, m) [k#N] 05 xn
0n><mm
Van(@g, Ug, Thop1, Ukg1) = Onxmm
[Vacr(zg, ux) 0]
[Vace(zk, ux) O]
01><m 1[k<N_1] 01><n_

Va1 (ks Uks Tt 1, Uk 1) = [Opxn)

Op—lxmm

Vg Tk, Uky Ty 1, U41) = Otxm —1[k < N—1] O1un
8.1 Notation
For convenience we define the following;:
r =Tk
u = U
Y= Tk+1
U = Uk+1
8.2 Backward pass
Normal
h? 4h?
L,=—V1; +—Vo,
6t e 2
h? 4h?
L, = —Vl1, +—Vo,
g mt
4h? h?
4h? h?
L, = —"Ao, + —V3,
6 2 + 6t
h? 4h?
g + G
h? 4h?
g + 6 2
4h? h?
Ly, = T£2yy + §£3yy
4h? h?
va =—/ vV —L VY
6 2 + 6t
4h?
Lxu =—/ TU
T
4h?
Lwy = ?glry

19

Minimum time

T, 1 =

Zh(fulew) ~ Sy, 0)

Lmv = —/ v
6 2
4h?
Luy = ?EQuy
4h?
Luv =—1 uv
6 2
4h?
Lyv = ?‘623;1;
L:r = La:
Li=|an L%h
_?51 + Loy, + ?gg + 2R, h
Ly =L,
-LU
Lo— _0}
Lzz = L:z::v
L — [Ly (%Elu + Loup)
YT (B 4 Lonu)T (3004 Lopn + 205+ 2Ryy,)
Lyy = Ly,
—Lm; 0
Ly I 0 0:|
Lz'& - [Lmu (%glm + Lth)]
Lyy = Lyy
Loy = [Lacv 0]
T
Lay = [Lyu (%639 + L2yh)]
T
Lon = Lvu (%&’m + L2vh)
A 0
Lyo = [Ly 0"
h2
My — 7Bu
T, 3
h2
hQ
My — —B
Tm, 3 b

lop, = a}, QX —)

€2hh = %((fc(xvu) - fc(yvv))TQ(xm - xf) + h(fc(xvu) - fc(y»v))TQ‘rmh

4
Lo = 6(h2€2h + 2hts)

4
Lonn = 6(2h€2h + 20y + B lopy, + 2hilap,)
4 2
6 8

4 9 h? . 2 -

Laon = G (2hbas + 17(0.51 + == % (A); QTm, + ShAy Q(am — o))

(2htoy + Sh* (B Q(@m — xp) + @y, Qfe(w, 1) = fe(y,v))))

L2hu =

1 > 2
Lo = 5 (2htay + 12 BLQu, + 2B Qi —27))

20

4 h? 2
Loyn = 5(2hlay + h2(f§Ag‘meh + 3hAQ@m — 2y))
4 9 h? T 2
Lth = 6(2}71621; —h (ng meh + gthQ(’l,’m — LIZf))
Infeasible

-Note: the bold variable is used to indicate that either u or 4 can be used if the problem is infeasible or minimum
time and infeasible, respectively

L,=1L,

— [Lu
La= Rzuz:|
L,=1L,

.

L= | 0}

wa = La:x

(Lyuw O
Ly = 0 RJ
Lyy =Ly,

B Lyy O
LU’U - I 0 O:|
Loyg = [Lacu O}
Loy = Loy
sz = [sz O}

Luy]"
Lgy = 0
Lva 0]
Lav =79~ ¢
T
Lys = [Lyv 0]

8.3 Preliminaries

Similar to the setup for the regular iLQR problem (Section ?7?), we define a generic nonlinear cost function

which we can approximate over N discrete time steps using Simpson integration:

N-—

H

dt
)+ E Uz, up) + 40T,) + L(Tkr1, Ugt1))
k=1
N1 (41)
:eN(xN)—’_ L(mkaukvmk+1auk+1)
k=1
where Z,,, u,, are the controls at the midpoint of the interval [k, k + 1].
We choose to linearly interpolate the controls such that
Uy, = Uk +2Uk+1 (42)

and define a function g that such x,,, = g(xk, uk, Tg+1, uk+1), which will be derived later.

21

We discretize the dynamics as before, but now include a dependence on the control at k + 1 to implement a first
order hold on the controls so that our dynamics are now xp41 = fq(@g, Uk, ugs+1), with a first-order Taylor-series
approximation:

5xk+1 = A(l’k, Uk, uk+1)5$k + B(l’k, Uk, uk+1)5uk + C(xk, Uk, ukﬂ)duk“ (43)

8.4 Cost-To-Go

With a given cost function, we can apply Bellman’s Principle of Optimality to define the optimal cost-to-go Vi (z)
by the recurrence relation:

VN = Ef(JCN)
Vi = u,{%&l{L(mk’ ks Tt 15 Ukt 1) + Viep1 (fa(Tr, un, up41)) } (44)

However, the minimization is now over controls at time steps k and k + 1. Since the cost at the previous time step
k — 1 is dependent on the control uy, we cannot optimize over u without taking into account the effect at £k — 1. To
avoid this, we define a new control-dependent cost-to-go function:

P(2p, up) = min { L(@g, g, g1, Upg1) + Pogt (Tog1, wrg1)

Uk+1
' (45)
= min {Q(Jck,uk, $k+1,uk+1)}
Uk+1
such that
Vi = min P (g, ug) (46)
Uk

We now perform a second-order Taylor-series expansion on P to get:

=3 [od sl vl a

where s € R*™™ and § € R(*)*(n+m) are the gradient and Hessian of 6P, similar to their definitions for the
normal iLQR case, except that now they are functions of both the state and control and the current time step.

8.5 Terminal Cost-to-go

The terminal cost-to-go is found by taking the the second order Taylor-series approximation of the terminal cost
Iy(xn):

- 1 (SI T 82@\’ 0 a0 (533
0Py = 2 {&L] [80 O} + % o ou

_ 1|z TS ox n ox

T2 |du Nsu| TN L su

8.6 Solving the Dynamic Programming Problem

As before, we find the deviations of the cost-to-go by taking a Taylor-series expansion and plugging in our linearized
dynamics (and foregoing subscripts for the more succinct notation defined in Section 8.1) to get

0P, = rr(%in {6L(6z, 6u, by, 6v) + 6 P(3y, 6v)}

= r%in 5Q(dz, du, Sy, v) (49)
= H;in 5Q(6x, 6u, f (5, du, dv), 0v) (50)
Substituting in the dynamics produces:
L [02]7 [Que Quu Qu] [02 oa
5Q(5$; (5U,6’U> =) du Que Quu Quov du| + [Qac Qu QU} du (51)
ov Que Quu Qoo ov ov

22

The terms of the @ are composed of the elements of L(z,u,y,v) and P(y,v). These calculations and the substitution
of the dynamics are detailed in Sections to avoid clutter when deriving the dynamic programming step.

To calculate the optimal modification to the nominal control at the next time step dv*, we take the derivative of 6Q
with respect to dv and solve for the minimizing dv*:

o))
852 = Q'u + vi(sv + Qva:(sx + Qvuéu
50" = Qo (Quad + Quud + Qu) (52)

= Kéx + bdu+d

It is important to note that the subscripts on the gains match the time index of the control deviation being calculated,
not the deviations by which they are multiplied (for more detail see Section 7.6)

By plugging in jv* into @ we find our approximated cost-to-go which we can propagate backward one time step.

L 1[s]T [Qr Qi) [6 . e [0
S il | AR

. 1[0z T T ox
=0Q" = 2 [&J S LM] ts [(M}

This completes the dynamic programming step. The equations to calculate S and s at the current time step are
derived in a following section.

(53)

8.6.1 Final time step of backwards recurssion

The recursive steps derived above are completed backwards, starting from the terminal state, as done for regular
iLQR. At the final step, however, we have a final optimization. Once we have calculated § P; we have

oV = r;lin(SP(xl,ul) (54)

from Equation 46. This minimization can now be carried out since u; does not affect any previous time steps. This
problem is identical to that of iLQR:

ouf = —Qua(Quadz + Q)
= Ki6x1 +dy

8.7 Calculating L

We now find a closed-form expression for 6 L(dx, du, dy, 6v) in Equation ??, which is the 2nd order approximation of
L(w,u,y,u)

8.7.1 Interpolation of states and controls

The state midpoint x,, will be interpolated using a cubic polynomial. This choice is made because we are using RK3
integration (3rd order accuracy) which requires a cubic representation for the interpolation to be the same order of
accuracy [reference]. The control midpoint w,, will be linearly interpolated.

The state x(t) over each interval ¢y < t < tx11 can be approximated using a cubic polynomial:

z(t) = at® + bt* +ct +d

with the following boundary conditions:

z(0) =z,

23

£(0) = f(zw, ur)
z(dt) = Tp41

#(dt) = f(@rt1, ukt1)

The coefficients enter into the system linearly and can be solved for as follows:

Tk 0 0 0 1 a
@ | |0 0 1 0]]b
Tpe1| | dt? At dt 1] |c
Epyr] (34t 2dt 1 0f |d
bl _|\& & @ @ Tk
C 0 1 0 0 Th+1
d 1 0 0 0] [&kn

To evaluate the midpoint z,,:

Ty = x(dt/2) = a(dt/2)® + b(dt/2)?

+c(dt/2) +d
_a
— |d* d* d b
=¥ % e)
d

2 1 =2 1 T
iy A2 A A k
:[dﬁ ar® dt 1} @ @ A @ k
8 4 2 0 0 0 Tha1
1 0 0 0 Tt

1(n)+ dt . dt .
Ty = =X X — XL — —X
5@k + Tpp) + Sde = Sdk
1 dt dt
= i(xk +xpy1) + gf(mk,uk) - gf(fkﬂ,ukﬂ)

= g(@k, Uk, Tht1, Ukt1)

The control midpoint is defined to be:

Up + U
U = %
8.7.2 Second order expansion of L(z,u,y,v)
(see section on Taylor Series expansions)
517!6 ’ L"cr Lmu L'ry Lrv 61%
k 2 5$k+1 Lyz Lyu Lyy Lyv 6mk+1
6 L’Ufl? L'uu L’U L'U’U 6
Uk+1 Y Uk+1 (55)
51’k
(5’U,k
+ [Lz L, L, Lv] P
gyt

We can consider the pieces that sum to form L(z,u,y,v) separately (i.e., £(z,u), €(Zm, um), (y,v)). First, we
consider the second order expansion of ¢(z, u):

Uz + bz, u+ du) = l(z,u)

24

or ol
1 82£ 1. 0%
+ 82|M5x+ §u82\m

and 8 55 are both zero.

Note that for our quadratic stage cost there are no cross terms so 57 ;u
The terms of interest for our quadratic stage cost are:

e = Q)
%h,u:Ru

2
%h’u = Q

2

The expansion for ¢(y,v) is defined identically, using y and v in the appropriate places.

glx = Q(JE - mf)
flu = Ru

glmz = Q

Eluu =R

l3y = Qy — xy)
€3v = Rv

E3yy = Q

£3vv =R

The expansion of ¢(z,,, u,,) requires application of the matrix chain rule, our cubic interpolation for z,,, linear
interpolation for wu,,, and linear approximation of the continuous dynamics:

Oz T OF

foo = ox Oz,
1. dt
— (51 + §,atx)Tc,g(xm —zf)

o O Ol +8umT or
= "9u oz, = Ou 8um

dt
= (35)T Q@ — xp) + Rum
" Oy Ol
T 0y O
1. dt
= (51 — g.Ay)TQ(xm —zf)

Oxm T O N Qup, T O
ov Oxy, ov Ouy,

dt 1
= (—ng)TQ(xm —xf)+ §Rum

621) =

o 0" 0% Oz,
T r 0x2, Ox

25

o ldt 1 dt
"o O " 0% day, N O T 0% Duy,
T 9y 022, du | Ou Ou2, du

_dt, g, dt 1.1
oo O " 02 dxy,
YT 9y 012, Oy

1 dt oo 1 dt

(51 - g-Ay) Q(if - gAy)
Oxm ' %0 Oz, N O, T O O,
v dxZ, Ov v Oul, O

dt o dt 1.1
_(_ng) Q(_§BU)+§R§

€2vv =

"o O " 0% day,
T "0x 0x2, Ou

1 dt g, dt
P O " 0% Oxy,
VT 9x 0x2, Oy
1
3
Orm ' %0 Oz,
Or Ox2, Ov
1 dt dt
= (=1 o Sz T -5 Pu
(51 + 5A) Q=5 By)
O T 0% Oy,
ou 0x%, Oy

dt o 1 dt

€2x'u -

éQuy =

dt p 1 dt
- @sreci-Ya,)

(o _ Oxn " 0% Omy, N O " L Oup,
U ou 0a2, Ov ou OuZ, Jv
dt . o dt 11

:(gBu) Q(_ng)+§R§
A
YO 9y 0x2, Ov

S Y N
= (51 = GA)TQ(-5B.)

4(3:)11ect the expanded terms from £(x, u), £(2m, Um), £(y, v). Importantly, multiply by the correct scaling factor %
or 2&t:
6

L= Y00 2+ 21+ L4y Qe — 2
L, = %Ru - %‘lt ((%Bu)TQ(xm —x5) + %R“m>

L= Q-+ YA xp)
L, = %Rv 4 %dt ((—%BU)TQ(JJm —xyp)+ %R“m)

26

= S0+ 2 A,)TQ(1+ A
Luu:%R (L >+5R5)
w="q+ %(%h—xt)@(%ff%m
b g L
wagt(; Yare s,
Ley="011 2 oy ATQGT ‘;tAw
Lov="2Crt dt A)TQ(-E,)

Luy = 4gt(dt)Q(c;tAy)
o S) L1
Lyvfg’f(;z—*w Q(—gm

8.7.3 Substituting in the Dynamics

Prior to taking the summation of the stage cost 0L and the cost-to-go d P to form 0Q(dx, du,dv) = 6L + 6P we will

substitute in dynamics

First, we substitute the linearized discrete dynamics into 0 P(dy, 0v) — dP(dx, du, dv):

dP(éx,du,dv) =

_ 1oy ’ Syy Syv| |0y oy
5y760) n 5 |:6’U:| |:Suy S’UU v * [Sy SU] ov
1 Adz + Béu + csv]” Syy Syv| [Adz + Béu+ Cov
2 ov Svy Svv ov
Adx + Béu + Cov
+[Sy S [50]
T
=3 ou Guz Guu Guol| |0u| G+ [Gw Gy GU]
(S'U va Gvu GUU (;,U
Guw = ATS,, A
Guu = B*S,,B
Gy = C1'Sy,C + CTSyy + SpyC + Sy
Gyu = ATS,, B

Guo = ATS,,C + ATS,,
Guw = B"S,,C + B'S,,

G, = ATS,
G, =B"S,
G,=C"S,+8S,

27

ox
ou
ov

|

(58)

T

ox Lyw Liw Lay Lige ox
¥T 9 |Adz + Bou+Cov| |Lys Lyu Ly, Liye
ov Lye Low Luy Lipwe ov
ox
+[Le Lu L, L ou
r “ v Y11 ASx + Béu + Cév
ov
This simplifies to:
0] | [Hee Hpu Hy] [02 Sz
oLi=|0u| 5 |Hue Huw Huol| |du| +[He H, H)]|ou
ov H,, H,, H,,| |v ov

where:

H,, =Lyy +LyyA+ATL,, + AL, A
Hy, = Ly, + LB+ B"L,, +B"L,,B
H,, = Ly, + L, C +C*L,, +C"L,,C
Hyy = Lyy + LyyB+ A" Ly, + A"L,,B
Hyy = Lyy + LyyC+ ATLy, + ATL,,C
Hyy = Lyy + LyyC + BT Ly, + BT L,,C

H,=L,+A"L,
H,=L,+B"L,
H,=L,+C"L,

This yields

L [52]7 [Qer Quu Qu] [02
6Q(5x,5u,5v):§ ou Quz Quu Quo| |du
o Que Quu Quv ov

Quz = Gz + Hya
Quu = Guu + Hyu
Quo = Guy + Hyy
Queu = Gou + Hyy
Quv = Guyp + Hyy
Quv = Guv + Hy

QU:GU+HU

28

]"‘[Qm Qu Qv}[

ox
ou
ov

Similarly, we substitute the linearized discrete dynamics into 6 L(dz, du, oy, 6v) — dL(dz, du, dv):

Adz + Béu + Cév

|

(61)

(63)

8.8 Calculating S and s

With the gains obtained by optimizing over the control at the next timestep, we are ready to calculate the cost-to-go
Hessian and gradient at the current time step:

1 oz g Qze Qzu Qv ow ow
(SP(.’E,’U,) =35 du Quz Quu Quo du + [Qx Qu Qv] du
Kéx + bdu +d Quvz Quu Quv| | Kbz + bou+d Kéx + bdu+d

= Q0x + Q,0u+ (QuKox + Q,bdu + Q,d)
+ 2 (02T Quudx + 5u” Q 0u)

+

N = N =

(627 Qpu0u 4 6u” Quudx)

+ (&L'TQMK&E + 027 Q ubou + 5;L‘TQ(,,,U(Z)

+ 2 (0uT Quu Koz + du™ Qb + du’ Q. d)
+ 2 (02T KT Qupdx + 6u' bT Qpdz 4+ d Qyp01)

((5:1¢Tl\"7(21,u6u + 0uT T Quudu+ d'Q 0u)

¢ U

+
NI RN~ NN

+ = (02T KT Qo Kbz + 02" KT Q,ubou + 627 KT Q0 d)

+ —(6uTbT Qo Koz 4 6uT b7 Quubou + 6u” b7 Q. d)

|

NI — N =N

(dT QoK x4+ d" Qyubou 4+ dTQyyd)

0 e Quul |0 ‘ 1|0
) 6 il e s

ox TS ox n ox
ou ksu 5k | §u

sz* = Qazx + Q:ch + KTer + KTQ'U’UK
Quu* = Quu + Qu’ub + bTQvu + bTvab
Qul‘* - (J'UJI,' + (Qll'ly [\7 + bT()U,’I' + bT()U'(' [\’

N = DN =

Qs = Qs+ QuE +d"Quz +d" QK
Qf=Qu+Qub+D"Qu, +d"Quub

1
AQ = Q.d + idTQ,U,U d

8.9 Forward Pass
8.9.1 Initial Rollout

We begin the first rollout with a set of controls, U € R™*N and an initial state, zy. To calculate the state at the
next time step we use the discrete dynamics with a first-order hold on the control:

Tpt1 = fa(@r, uk, up41), for k=1,..., N -1 (69)

29

8.9.2 Rollout with Gains

We assume we have a control U and a trajectory X from the previous iteration, along with the gains K € R™*"*N p ¢
R™*m*N and d € R™*N. (Note: « € [0,1] is the line search paramter)
Prior to iterating over the time steps we calculate the deviation of the first control:
ouy = Koz, + ady
= ad; (70)

1_1,1 =u; + 5U1
since dx, = 0.
We can then perform the rollout as follows for k=1,..., N — 1:

0xp = T — X
upt1 = Kry10z, + bpy10ur + adiyr
Ukl = Uk+1 + OUk41
Tpy1 = fa(Th, U, Upt1)

8.10 Regularization

As before, there are two types of regularization that can be employed: control and state:
Option 1:

vi = vi + IOI
K = _Q;}va
b= _Q;}Qvu
d=—QuQu

;x = me + szK + KTva + KTQ’U’UK
Qzu = Quu + Qvub + bTQvu + bTvib
Zm = Qum + quK + bTva + bTviK

Q; = Qz + KTQU + szd + KTvid
QZ = Qu + bTQU + Quud + bTQ'uvd

AQ = Qui+ AT Quud
Option 2:

Quo = Loy + LT,C + CT Ly, + CT Ly, C + CT(Syy + pI)C + CTS,, + ST,C + S,
Quv = Loy + LoyC + AT Ly, + ATL,,, C + AT (S,, + pI)C + ATS,,
Quv = Luw + LuyyC + B'Ly, + B'L,,C + BT (S, + pI)C + BT S,,

K = _Q;}va
b= *Q;}Qvu
d= _Q;lev

30

Qzu = Quu + Qvub + bTQvu + bTvib

Qi = Qo+ KTQu + Quud + K" Quud
QZ = Qu + bTQU + Q?wd + bTvid

AQ=Qui+ 3d"Quud

For both regularization types, when timestep k = 1:

Quy = Quu + 01

K, = _(QZu)_lQ;u
by =0

d = —(Qn.) ' Q%

8.11 Constraints (Augmented Lagrange Method)

Previously, we defined the constraint stage cost as:

1
g(,u) = =cr (v, up) " Lo (T, ur) + AL ek (vr, ug)
2

While we are using Simpson integration to approximate the state and control stage cost, here we use trapezoidal
integration (which is not dependent on the midpoint state).

LA(X,U;p,N) =Ly(zn)

+ senv(@n) Luven (@n) + Ajen (an)

Z N
-

dt
S (U,) + 40w, wm) + Uasr, wei))

T2

=11

+ > g(wr,ur)

ES
Il

1

Importantly, we must modify the backward pass. We defined §Q(x,u,y,v) for the first order holdand will modify
it in a similar manner to the Section 3.2:

T = Q_;E + Cg[uc—f— Cg)\

Q
éu = Qu + CEI#C + CZA

Qoo = Qoo + L 16,
Quu = Quu + ¢TI,
Qru = Quu + L Ly
The boundary conditions are augmented as well, similar to Section 3.2, they fill the P Hessian and gradient.
8y = Sz + (chIuNcN + CZ;N)\N)

31

u=Su+ (ch Iiyen +cl AN)

Am = Sz + (CfNIMNCzN) + (CZ;IMCI)

9 Minimum Time: NOTE: THIS FORMULATION IS NOT UP TO
DATE

It is often desirable to minimize the time required to reach the goal state. Minimum-time policies very often results
in “bang-bang” control policies, where the control is saturated at the limits. It is therefore imperative to specify
control bounds when solving minimum time problems. Here we set forth the necessary modifications to the iLQR
algorithm to compute minimum-time policies.

9.1 Notation

As will be shown, it is natural to treat the time step dt as an additional control. We then define the following:
1. uw € R™ = vector of controls for the original problem
2. 4 € R™ = controls augmented with time

In general, any value related to the controls with a hat will denote values augmented with the time step.

9.2 General Methodology

In order to minimize over time, we must make time a decision variable. It is very important that all decision variables
are only locally coupled between time-steps in order to leverage the sparsity structure of the Hessian and solve the
problem using dynamic programming. Therefore, rather than have a single decision variable represent the total time
or even the time step, we assign a separate time step variable to each time step: dt; = the time between time step k
and k + 1, i.e. dty, = tp+1 — t. We then constrain each of these values to be positive and less than some maximum
threshold: 0 < dt; < dtmax.

We also want the time steps to be equal, since we want to avoid having the algorithm exploit the time step to
artificially lower the cost. We then impose N — 2 constraints: dty = dtx+1, k=1,..., N — 2 to set the time steps
equal.

It is also imperative that we never allow the time steps to become negative when plugged into the dynamics,
since this effectives “reverses” time and will result in strange behavior. To ensure dt is strictly positive we store the
square root of the time step, which is then squared whenever plugged into dynamics, ensuring strict positivity. This
these high-level insights and design decision, we formulate the problem.

9.3 Problem Formulation
9.3.1 Cost Function

We first set up the cost function, or Lagrangian since we are solving a constrained problem:

2

-1

J=LlzN)+ (U(xg, ug) + cdt)dt

b
Il
—

we now define h := v/dt so that

i

J=L0zN)+ (U(zg, up) + ch?)h?

b
Il
—

32

9.3.2 Optimization Problem

Using the previous cost function we now formulate the optimization problem:

N—-1
. 2y7,2
Join, Lxn) + I;(ﬁ(xk,uk) + ch®)h

subject to z;p < xp < Tup, VE
up < up < Uy, VE

TN =XTf
0 < hp < Vdtmax, Yk
hi = hgy1, Vk

Note that enforcing equality between hy, hiy1 and ditg, dti41 are equivalent, so we avoid unnecessary squares in the
constraints by simply enforcing equality on h.
9.3.3 Augmented Lagrangian

We use the Augmented Lagrangian method to convert the problem to an unconstrained optimization problem. As
mentioned previously, we can conveniently treat hy as an additional control and form 4y = [ul hj]T. The Lagrangian
is formed as usual, except this time we special case the equality constraint on the time steps:

N-1
1 1
La={l(zy)+ C(:CN) I, ne(zn) +)\Nc TN) + Z (g, ug) §ch2)h2 + 5c(gck, ﬁ/k;)T-[u,k:C(xk7 Q) +)\gc(ﬂck, ﬁk)]—i—
k=1

N—2
ph (b — hiy1)? 4+ Mo (hi — hgir)

N | =

k=1
which turns our problem into:
min La
g B, A, AL VE

We define ¢(xg, 4r) in the next section.

9.3.4 Discrete Dynamics

It is also necessary to account for the impact of the changing dt on the dynamics. In general, the discrete dynamics
are a function of the state, control, and time step:

Tyt = f(p, u, diy) = f(ze, up, hi)
So when taking the first-order Taylor Series expansion we also take the expansion about hy:

0 9] 0
5xk+1:3i 6k+81f,6 (5k+a£

Tk, uk,hy Tl Uk, Uk Tk, Uk Pk

Ohg

= A(.’Ek, Uk, hk)éxk + B(l‘k, U, hk)éuk =+ H(xk, Uk, hk)(Shk
= Azk, tx)y, + By, i)

where B(l‘k,ﬂk) = [B(xk,uk, hk) H(xk,uk,hk].

9.4 Backwards Pass

With these changes, we just treat the time step as an additional control, so nothing changes about the derivation
of the Dynamic Programming steps to calculate the closed-loop gains during the backwards pass. However, since
we now have a different Lagrangian, we need to be careful to correctly the specify the expansion for the augmented
controls.

33

9.4.1 Terminal Cost-to-Go

Nothing changes here, since the Lagrangian at the terminal state is not a function of dt. So,

ot

sn = o+ Vaelan) " (Lun)e(an) + Vi Ay
62£N T

Sy = 502 + Vae(zn)" (Iyn)Vac(zn)

9.4.2 Dynamic Programming Step

Similar to before, our goal is to find the cost-to-go at step k:

§Vi, = min {0Qy (vx, uk, hi,)}

Uk, Pk

where

0Q = Qu0x + Quou + Qnéh+
02T Quudx + du” Quudu + ShT Qupdh+
62" Quudu + 027 Qo + su” Quidh
and Quz = Loz + Vau Vier1 (f (2, ug, hi)) and so forth for the other terms of the expansion.

We re-state the Lagrangian here for reference, prior to defining the partials:

N-1

1 1
La={zy)+clzy) I, ve(zn) + Aye(rn) + [(U(g, ui) + ichz)h2 + ic(mk,)" 1y pe(@e,) + Af e(zy, @)+
k=1
N-2,
> gk = haa)? + X (o = i)
k=1

Taking the expansion of the Lagrangian and the cost-to-go we get the following terms. To simplify the notation,
any variable without a subscript is assumed to at the current time step k, and terms with a superscript (+) or (-)
are the values at the next (k4 1) or previous (k — 1) time step.

Lo =l:h?+ I Tuc+ I X
Lo = l,h? + cf]uc + cg/\
Ly, = 20h + 2ch® + cf Tpe + i A + pe(h — b)) + X — pf (W™ — h) — A;

wa = E:E:vh2 + Cglﬁ'cw
Lo = Luuh® + cL Tuc,
Lny =20+ 6¢ch? + C{Iuch + g+ oy

Low = lenh?® + cf[ucu
Lon = 20.h + cf[uch
Lun = 20,h + cgluch
by augmenting the control with dt we get the following

L, =Lh* 4+ I Tpe+ eI
Lo =Ll,h*+chTuc+ A+ [0 20h+2eh® + pp(h — ht) + Ay — pt(h™ — h) — A[]

Loy = Lpnh® + cf[ucz

0 2ht,

A~ A ~ o 2 T
Laa = Lagh® + ¢ Tuc, + 2heT 20+ 6¢h® 4 g + py

Log = lygh® + T lpcg + [0 2h0,]

34

and
Qr=L,+sTA
Qa=Li+sB
Quz = Low + ATSTA
Qua = Laa + BTSTB
Qua = Laa + ATstB

The gains can then be readily calculated used an identical procedure as in the non-minimum time case by using these

augmented partials of Q.

9.5 Forward Pass
The forward pass is identical, just make sure to extract out the updated h and plug into the dynamics, i.e.

0x = Ty — Tk,

ug = up + Kpdxy + ady

Bk = Ug [m]

Thy1 = f(i‘k,ﬂk[l : m], h)
where the square brackets are vector indexing operations (similar to syntax used in Julia or Python). Constraints:

In the previous section we used c(xg, Gx) € RP, which is equivalent to ¢(xy, ug, hy), which we define as:

i U — Umax 1
h — \% dtmax [U — amax 1
Umin — U ﬁ/min -1
_h T — Tmax
c(z,u,h) = T — Tmax =c(z,u) = ZTpnin — T
Lmin — T Cr (1'7 u)
cr(z,u) ce(z,u)
CE(.Q?,’IL) _(hk — hk+1)[k} < N — 1]_
(hk - hk+1)[k‘ <N — 1]

where the horizontal line indicates the separation between inequality (above) and equality (below) constraints.
We now write down the gradients of this equation, since they will be used when re-deriving the backwards pass later

Orflxn
Osixn
In
Vee(z,4) = -I,
Vicer(x,u)
Vaecr(x,u)
01><r1

- I
-1,
Ofixrn
VﬁC(.’IJ,) = Oaxin
[Vucr(z,u) 0]
[Vuce(z,u) 0]
| 1[F < N —1]

35

