
Dojo: A Differentiable Simulator for Robotics
Taylor A. Howell∗
Stanford University

thowell@stanford.edu

Simon Le Cleac’h∗
Stanford University

simonlc@stanford.edu

J. Zico Kolter
Carnegie Mellon University

zkolter@cs.cmu.edu

Mac Schwager
Stanford University

schwager@stanford.edu

Zachary Manchester
Carnegie Mellon University

zacm@cmu.edu

Abstract—We present a differentiable rigid-body-dynamics
simulator for robotics that prioritizes physical accuracy and
differentiability: Dojo. The simulator utilizes an expressive
maximal-coordinates representation, achieves stable simulation
at low sample rates, and conserves energy and momentum by
employing a variational integrator. A nonlinear complementarity
problem, with nonlinear friction cones, models hard contact
and is reliably solved using a custom primal-dual interior-
point method. The implicit-function theorem enables efficient
differentiation of an intermediate relaxed problem and computes
smooth gradients from the contact model. We demonstrate the
usefulness of the simulator and its gradients through a num-
ber of examples including: simulation, trajectory optimization,
reinforcement learning, and system identification.

I. INTRODUCTION

Simulators are vital tools across robotics domains, ranging
from manipulation to locomotion, with a myriad of applica-
tions including: training policies with reinforcement-learning
methods, identifying system parameters via gradient-based re-
gression, generating datasets for learning, differentiable model
representations in model-predictive-control frameworks, and
general Monte Carlo testing and validation. In order to
overcome the sim-to-real gap and be of practical value in
real-world applications, a simulator should emulate physics
to an appropriate fidelity, including energy and momentum
conservation and the impact and friction behaviors of contact
interactions. Additionally, simulation should be reliable, fast,
and ideally, differentiable.

In recent years, a number of simulators [31, 11, 36, 12,
15, 13] have been proposed with potential application to
robotics. The most popular and predominant among them
is MuJoCo [34], which has become a de facto standard
for reinforcement learning. In this work, we systematically
address key deficiencies of these prior tools—specifically:
dynamics and contact models, numerical optimization rou-
tines, and gradient computations—by taking a physics- and
optimization-first approach to simulator design, prioritizing
physical accuracy and differentiability that are useful across
robotics applications. The result is Dojo, a differentiable rigid-
body-dynamics-with-contact simulator designed for robotics
applications like motion planning, control, and reinforcement
learning. Key attributes of Dojo include:

∗ These authors contributed equally to this work.

Fig. 1: Atlas drop. The current implementation of Dojo simulates this
system with 403 maximal-coordinates states, 36 actuated degrees of
freedom, and four contact points on each foot with real-time rates
at 65 Hz. Dojo satisfies penetration constraints to machine precision,
while MuJoCo allows for tens of millimeters of penetration between
rigid bodies and becomes unstable at low simulation rates.

• Maximal-coordinates representation for multi-rigid-body
dynamics

• Variational integrator for energy and momentum conser-
vation

• Nonlinear complementarity problem (NCP) model for
contact, including exact nonlinear friction cones

• Primal-dual interior-point method for reliably satisfying
the NCP and handling cone constraints and quaternions

• Smooth gradients efficiently computed via the implicit-
function theorem

In the remainder of this paper, we first provide an overview
of existing state-of-the-art simulators, including their capabili-
ties and deficiencies, in Section II. Then, we provide important
technical background in Section III. Next, we present an
overview of our simulator, Dojo, and its key subroutines in
Section IV. A collection of examples including: simulation,
trajectory optimization, reinforcement learning, and system
identification is presented to highlight Dojo’s capabilities and
compare to existing tools in Section V. Finally, we conclude
with a summary of our results and avenues for future work in
Section VI.

II. EXISTING STATE-OF-THE-ART

Many simulators being developed and used in practice today
were not designed for real-world robotics applications, and it is
common for these tools to prioritize the appearance of realism

TABLE I: Comparison of popular simulators with potential application to robotics (adapted from [17]).

simulator year application integrator state contact solver language gradients
MuJoCo 2015 robotics implicit Euler/RK4 minimal soft Newton/PGS/CG C finite-difference

Drake 2019 robotics implicit Euler/RADAU5 minimal soft/hard LCP/Newton C++ gradient-bundle
Bullet 2006 graphics implicit Euler minimal soft/hard LCP C/C++ sub-gradient
DART 2012 robotics implicit Euler minimal hard LCP C++ sub-gradient
Brax 2021 graphics explicit Euler maximal soft N/A Python sub-gradient

RaiSim unreleased robotics implicit Euler minimal hard bisection C++ -
Dojo 2022 robotics variational maximal hard NCP Julia smooth gradient

over actual physical accuracy. Additionally, many of these
simulators were designed primarily for graphics and animation
applications where fast simulation rates are prioritized and
general-purpose numerical-optimization routines that do not
natively support key elements from robotics domains, like cone
constraints or quaternions, are commonplace. In this section,
we provide background on a collection of popular existing
state-of-the-art simulators, including: discussion of physical
fidelity, underlying optimization routines, and ability to return
gradients.

MuJoCo, which has recently been made open-source, uti-
lizes minimal-coordinates representations, and employs both
semi-implicit Euler and explicit fourth-order Runge-Kutta in-
tegrators to simulate multi-rigid-body systems. These integra-
tors often require small time steps, particularly for systems
experiencing contact, and typically sample rates of hundreds
to thousands of Hertz are required for stable simulation, which
a mature and efficient implementation is able to achieve at real-
time rates. However, these high rates can prove a challenge for
control tasks, such as model-predictive control applications
where real-time re-planning is required, or reinforcement-
learning settings where vanishing or exploding gradients are
exacerbated over long horizons with many time steps.

Impact and friction are modeled using a smooth, convex
contact model [33]. While this approach reliably computes
contact forces (e.g., the projected Gauss-Seidel (PGS) or
conjugate-gradient (CG) solver does not fail to return a so-
lution), it introduces artificial damping, and the system ex-
periences unphysical interpenetration and forces at a distance
(i.e., while not in contact). The default friction model employs
a pyramidal approximation of the friction cone, which can
introduce additional artifacts like velocity drift during slid-
ing. Additionally, achieving good simulation behavior often
requires system-specific tuning of multiple solver parameters.
Further, the “soft” contact model is computed using a primal
optimization method, meaning that as parameters are set to
produce “hard,” or more realistic contact, the underlying op-
timization problem becomes increasingly ill-conditioned and
difficult to solve. As a result, it is often not possible to
eliminate unphysical artifacts from the simulation and produce
realistic results.

For applications that require them, MuJoCo returns gra-
dients computed using finite-difference methods [29]. This
approach requires multiple calls to the simulator, which can
be expensive if not performed in parallel. Additionally, in the
contact setting, the perturbations to the current state required

by a finite-difference approach may violate contact constraints,
giving spurious results.

Drake [31] was designed for robotics applications and its
dynamics primarily rely on a classic time-stepping contact
model that solves a linear complementarity problem (LCP) at
each time step [28]. To satisfy the LCP problem formulation,
a number of approximations are made to the dynamics and
contact model, including the use of an approximate friction
cone. To ensure stability of the simulation, small time steps
are used where linearizations of the dynamics are valid, but
importantly, the simulator can achieve accurate hard contact.
General-purpose LCP solvers that are typically used rely on
a pivoting method like Lemke’s algorithm [6]. Randomized
smoothing has been proposed as a method for returning
gradients through contact [32] with this model. An alternative
soft-contact model is also available for patch contacts [9], but
it is more computationally expensive, requiring sophisticated
higher-order implicit integrators, and does not natively provide
gradients.

Bullet [13] similarly relies on an LCP contact model,
but was originally designed for graphics applications. The
simulator also has an alternative soft-contact model that trades
off physical accuracy for computational speed. Gradients
are computed using general-purpose automatic-differentiation
tools.

DART [36] has similar dynamics and contact models to
Bullet, but employs the implicit-function theorem to differ-
entiate through the solver in order to return gradients. How-
ever, because the general-purpose solver relies on an active-
set method, sub-gradients are returned that do not convey
useful information through contact events. A heuristic [36]
has been proposed to overcome this limitation, but it is unclear
whether this approach can scale to the large number of contact
transitions required in many robotics applications.

Brax [11] employs maximal-coordinates representations and
has an impulse-correction contact model that utilizes explicit
integrators. System-specific tuning of springs and dampers that
connect rigid bodies is required for stable simulation and a
relatively simple contact model is employed that does not
require certain linear-algebra routines in order to deploy the
simulator on hardware designed for parallel computation.

Similar to previous simulator work [5], Dojo uti-
lizes the open-source maximal-coordinates dynamics library
ConstrainedDynamics.jl and efficient graph-based
linear-system solver GraphBasedSystems.jl. However,
unlike this related work, Dojo has an improved contact model,

specifically with regard to friction and graph representation;
utilizes a more efficient, reliable, and versatile interior-point
solver for the NCP; efficiently returns smooth gradients;
and includes improved integrator, joint, and internal friction
support.

The properties and characteristics of these existing simula-
tors are summarized in Table I. We find that none of the exist-
ing simulators prioritize two of the most important attributes
for robotics: physical accuracy and useful differentiability.
This motivates our development of a new simulator.

III. TECHNICAL BACKGROUND

In this section we provide technical background on
maximal-coordinates state representations, complementarity-
based contact models, and implicit differentiation.

A. Maximal Coordinates

Most robotics simulators utilize minimal- or joint-
coordinates representations for dynamics because of the small
number of states and convenience of implementation. This
results in small, but dense systems of linear equations. In
contrast, maximal-coordinates explicitly represent the position,
orientation, and velocities of each body in a multi-rigid-body
system. This produces large, sparse systems of linear equations
that can be efficiently optimized, including in the contact
setting, and provides more information about a system at each
simulation step. We provide an overview, largely based on
prior work [4], of this representation.

A single rigid body is defined by its mass and inertia, and
has a configuration, x = (p, q) ∈ X = R3 ×H, comprising a
position p and unit quaternion q, where H is the space of four-
dimensional unit quaternions. We define the implicit discrete-
time dynamics d : X×X×X→ R6 as:

d(x−, x, x+) = 0, (1)

where we indicate the previous and next time steps with minus
(−) and plus (+) subscripts, respectively, and the current time
step without decoration. A variational integrator is employed
that has desirable energy and momentum conservation proper-
ties [21]. Linear and angular velocities are handled implicitly
via finite-difference approximations.

For a multi-rigid-body system with bodies a and b connected
via a joint—common types include: revolute, prismatic, and
spherical—we introduce a constraint, g : X ×X → Rj , that
couples the two bodies:

gab(xa+, x
b
+) = 0. (2)

An impulse, y ∈ Rj , where j is equal to the six degrees-of-
freedom of an unconstrained body minus the joint’s number
of degrees-of-freedom, acts on both bodies to satisfy the
constraint. The implicit integrator for the multi-rigid-body
system has the form,da(xa−, xa, xa+) +Ga(xa, xb)T yab

db(xb−, x
b, xb+) +Gb(xa, xb)T yab

gab(xa+, x
b
+)

 = 0, (3)

body
a

body
b

joint
bd

body
d

contact
3

joint
ac

joint
bc

contact
1

contact
2

body
c

Fig. 2: Graph structure for maximal-coordinates system with 4
bodies, 3 joints, and 3 points of contact.

where G : X × X → Rj×6 is a mapping from the joint to
the maximal-coordinates space and is related to the Jacobian
of the joint constraint.

We can generalize (3) to include additional bodies and
joints. For a system with N bodies and M joints we define a
maximal-coordinates configuration z = (x(1), . . . , x(N)) ∈ Z
and joint impulse w = (y(1), . . . , y(M)) ∈W. We define the
implicit discrete-time dynamics of the maximal-coordinates
system as:

f(z−, z, z+, w) = 0, (4)

where f : Z× Z× Z×W → R6N . In order to simulate the
system we find z+ and w that satisfy (4) for a provided z−
and z using Newton’s method.

By exploiting the mechanism’s structure, we can efficiently
perform root finding on (4) (see [4] for additional details). This
structure is manifest as a graph of the mechanism, where each
body and joint is considered a node, and joints have edges
connecting bodies (Fig. 2). Because the mechanism structure
is known a priori, a permutation matrix can be precomputed
and used to perform efficient sparse linear algebra during
simulation. For instance, in the case where the joint constraints
form a system without loops, the resulting sparse system can
be solved in linear time with respect to the number of links.

B. Complementarity-Based Contact Models

Contact is modeled via constraints on the system’s config-
uration and the applied contact forces.

Impact: For a system with P contact points, we define
a signed-distance function, ϕ : Z → RP , subject to the
following element-wise constraint:

ϕ(z) ≥ 0. (5)

Impact forces with magnitude γ ∈ RP are applied to the
bodies’ contact points in the direction of their surface normals
in order to enforce (5) and prevent interpenetration. A non-
negative constraint,

γ ≥ 0, (6)

enforces physical behavior that impulses are repulsive (e.g.,
the floor does not attract bodies), and the complementarity
condition,

γ ◦ ϕ(z) = 0, (7)

Fig. 3: Friction-cone comparison. Linearized double-parameterized
(left) and nonlinear second-order (right) cones.

where ◦ is an element-wise product operator, enforces zero
force if the body is not in contact and allows non-zero force
during contact.

Friction: Coulomb friction instantaneously maximizes the
dissipation of kinetic energy between two objects in contact.
For a single contact point, this physical phenomenon can be
modeled by the following optimization problem,

minimize
b

vT b

subject to ∥b∥2 ≤ µγ,
(8)

where v ∈ R2 is the tangential velocity at the contact point,
b ∈ R2 is the friction force, and µ ∈ R+ is the coefficient of
friction between the two objects [23].

This problem is naturally a convex second-order cone pro-
gram, and can be efficiently and reliably solved [18]. However,
classically, an approximate version of (8):

minimize
β

[
vT −vT

]
β,

subject to βT 1 ≤ µγ,
β ≥ 0,

(9)

which satisfies the LCP formulation, is instead solved. Here,
the friction cone is linearized (Fig. 3) and the friction vector,
β ∈ R4, is correspondingly overparameterized and subject to
additional non-negative constraints [28].

The optimality conditions of (9) and constraints used in the
LCP are: [

vT −vT
]T

+ ψ1− η = 0, (10)

µγ − βT 1 ≥ 0, (11)

ψ · (µγ − βT 1) = 0, (12)
β ◦ η = 0, (13)
β, ψ, η ≥ 0, (14)

where ψ ∈ R and η ∈ R4 are the dual variables associated
with the friction cone and positivity constraints, respectively,
and 1 is a vector of ones.

The primary drawback to this formulation is that the opti-
mized friction force will naturally align with the vertices of
the cone approximation, which may not align with the velocity
vector of the contact point. Thus, the friction force does not
perfectly oppose the movement of the system at the contact
point. Unless the pyramidal approximation is improved with
a finer discretization, incurring increased computational cost,
unphysical velocity drift will occur. Additionally, the LCP
contact model requires a linearized form of the dynamics (1)
and a linear approximation of the signed-distance functions
(5-7), both of which negatively impact physical accuracy.

C. Implicit-Function Theorem

An implicit function, r : Rnw ×Rnθ → Rnw , is defined as

r(w∗; θ) = 0, (15)

for solution w∗ ∈ Rnw and problem data θ ∈ Rnθ . At a
solution point of (15) the sensitivities of the solution with
respect to the problem data, i.e., ∂w∗/∂θ, can be computed
under certain conditions [7]. First, we approximate (15) to first
order:

∂r

∂w
δw +

∂r

∂θ
δθ = 0, (16)

and then solve for the relationship:

∂w∗

∂θ
= −

(∂r
∂w

)−1 ∂r

∂θ
. (17)

In case (∂r/∂w)−1 is not well defined, (e.g., not full rank)
we can either apply regularization or approximately solve (17)
with, for example, a least-squares approach.

Often, Newton’s method is employed to find solutions to
(15) and custom linear-system solvers can efficiently compute
search directions for this purpose. Importantly, the factor-
ization of ∂r/∂w used to find a solution can be reused to
compute (17) at very low computational cost using only back-
substitution. Additionally, each element of the problem-data
sensitivity can be computed in parallel.

IV. DOJO

This section presents the key algorithms and subroutines,
including: variational integrators, contact model, primal-dual
interior-point solver, and smooth gradients implemented for
Dojo. An open-source implementation of the simulator is also
provided.

A. Variational Integrator

We use a specialized implicit integrator that preserves
energy and momentum, natively handles quaternions, and
alleviates spurious artifacts that commonly arise from contact
interactions. This integrator is based on prior work [21, 4], but
we make a number of key modifications to improve its numeri-
cal properties for simulation: First, we utilize impulses instead
of forces. In practice we find that this subtle change greatly
improves the convergence and reliability of a simulation step.
Second, we utilize position and quaternion trajectories for sim-
ulation, with linear and angular velocities defined implicitly
in the integrator via finite-difference schemes. The benefit
to this approach is that velocities in the contact setting are
discontinuous, whereas position and quaternion trajectories,
while non-smooth, are continuous.

The integrator (1) used by Dojo for each body has linear:

m(p+ − 2p+ p−)/h− hmg = 0, (18)

and rotational:

V L(q)T
(
TR(q+)

TV TJV L(q)T q+ (19)

+ L(q−)V
TJV L(q−)

T q
)
/h = 0,

components with mass m ∈ R++, inertia J ∈ S3
++, gravity

g ∈ R3, and time step h ∈ R++. Equation (18) is essentially a
second-order centered-finite-difference approximation of New-
ton’s second law, while (19) is a similar second-order finite-
difference approximation of Euler’s equation for the rotational
dynamics of a rigid body expressed with quaternions. The
matrix notation we use for quaternion operations is defined
in Appendix B.

Both (18) and (19) are derived by approximating Hamilton’s
Principle of Least-Action using a simple midpoint scheme
[21, 19]. This approach produces variational integrators that
automatically conserve momentum and energy [21].

B. Contact Model

Impact and friction behaviors are modeled, along with
the system’s dynamics, as an NCP. This model simulates
hard contact without requiring system-specific solver tuning.
Additionally, contacts between a system and the environment
are treated as a single graph node connected to a rigid body
(Fig 2). As a result, the simulator retains efficient linear-time
complexity for open-chain mechanical systems.

Dojo uses the classic impact model (5-7) and in the follow-
ing section we present its Coulomb friction model that utilizes
an exact nonlinear friction cone.

Nonlinear friction cone: In contrast to the LCP approach,
we utilize the optimality conditions of (8) in a form amenable
to a primal-dual interior-point solver. The associated cone
program is,

minimize
β

[
0 vT

]
β

subject to β(1) = µγ,
β ∈ Q3,

(20)

where subscripts indicate vector indices and the n-dimensional
second-order cone Qn is defined by:

Qn = {(a(1), a(2:n)) ∈ R×Rn−1 | ∥a(2:n)∥2 ≤ a(1)}. (21)

The relaxed optimality conditions for (20) in interior-point
form are:

v − η(2:3) = 0, (22)
β(1) − µγ = 0, (23)

β ◦ η = κe, (24)

β, η ∈ Q3, (25)

with dual variable η ∈ Q3 associated with the second-order-
cone constraints, and central-path parameter, κ ∈ R+. The
second-order-cone product is:

β ◦ η = (βT η, β(1)η(2:n) + η(1)β(2:n)), (26)

and,
e = (1, 0, . . . , 0), (27)

is its corresponding identity element [35]. Friction is recovered
from the solution: b = β∗

(2:3). The benefits of this model are
increased physical fidelity and fewer optimization variables,
without substantial increase in computational cost.

Nonlinear complementarity problem: To simulate a system
represented in maximal coordinates that experiences contact, a
solver aims to satisfy the following relaxed feasibility problem:

find z+, w, γ, β
(1:P), η(1:P), s (28)

s.t. f(z−, z, z+, w) +B(z)u+ C(z)Tλ = 0

s− ϕ(z+) = 0,

γ ◦ s = κ1,
β(i) ◦ η(i) = κe, i = 1, . . . , P,

v(i)(z, z+)− η(i)(2:3) = 0, i = 1, . . . , P,

β
(i)
(1) − µ

(i)γ(i) = 0, i = 1, . . . , P,

γ, s ≥ 0,

β(i), η(i) ∈ Q3, i = 1, . . . , P,

where u ∈ Rm is the control input at the current time step,
λ = (β

(1)
(2:3), γ

(1), . . . , β
(P)
(2:3), γ

(P)) ∈ Λ is the concatenation of
impact and friction impulses, B : Z → R6N×m is the input
Jacobian mapping control inputs into maximal coordinates,
C : Z→ Rdim(Λ)×6N is a contact Jacobian mapping between
maximal coordinates and contact surfaces, s ∈ RP is a slack
variable introduced for convenience, and v(i) : Z × Z → R2

is the tangential velocity at contact point i. Joint limits and
internal friction are readily incorporated into this problem
formulation.

To simulate a system forward in time one step, given a
control input and state comprising the previous and current
configurations, solutions to a sequence of relaxed problems
(28) are found with κ → 0. The central-path parameter
has a physical interpretation as being the softness of the
contact model. A value κ = 0 corresponds to exact “hard”
or inelastic contact, whereas a relaxed value produces soft
contact where contact forces can occur at a distance. The
primal-dual interior-point solver described in the next section
adaptively decreases this parameter in order to efficiently and
reliably converge to hard contact solutions. In practice, the
simulator is set to converge to small values for simulation in
order to simulate accurate physics, while relaxed values are
used to compute smooth gradients in order to provide useful
information through contact events.

C. Primal-Dual Interior-Point Solver

To efficiently and reliably satisfy (28), we developed a
custom primal-dual interior-point solver for NCPs with cone
constraints and quaternions. The algorithm is largely based
upon Mehrotra’s predictor-corrector algorithm [22, 24], while
borrowing practical numerical features from CVXOPT [35]
to handle cones and non-Euclidean optimization to handle
quaternions [16]. We also introduce heuristics that further
improve reliability and overall performance of the solver for
our simulation-step NCPs.

The primary advantages of this algorithm are the correc-
tion to the classic Newton step, which can greatly reduce
the iterations required by the solver (often halving the total

side view

top view

Fig. 4: Velocity drift resulting from friction-cone approximation.
Comparison between a box sliding with approximate cones having
four vertices implemented in MuJoCo (magenta) and Dojo (orange)
versus MuJoCo’s (black) and Dojo’s (blue) nonlinear friction cones.
Dojo’s nonlinear friction cone gives the physically correct straight
line motion, while linear friction-cone approximations lead to lateral
drift. MuJoCo’s nonlinear friction cone exhibits a minor rotational
drift.

number of iterations), and feedback on the problem’s central-
path parameter that helps avoid premature ill-conditioning and
adaptively drives the complementarity violation to zero in
order to reliably simulate hard contact.

Problem formulation: The solver aims to satisfy instantia-
tions of the following problem:

find x, y, z

subject to c(x, y, z; θ) = 0,
y(i) ◦ z(i) = κe, i = 1, . . . , n,
y(i), z(i) ∈ K, i = 1, . . . , n,

(29)

with decision variables x ∈ Rk and y, z ∈ Rm, equality-
constraint set c : Rk × Rm × Rm × Rl → Rh, problem
data θ ∈ Rl; and where K is the Cartesian product of n total
positive-orthant and second-order cones [1]. The variables are
partitioned: x = (x(1), . . . , x(p)), where i = 1 are Euclidean
variables and i = 2, . . . , p are each quaternion variables; and
y = (y(1), . . . , y(n)), z = (z(1), . . . , z(n)), where j = 1 is the
positive-orthant and the remaining j = 2, . . . , n are second-
order cones. For convenience, we denote w = (x, y, z).

The algorithm aims to satisfy a sequence of relaxed prob-
lems with κ > 0 and κ→ 0 in order to reliably converge to a
solution of the original problem (i.e., κ = 0). This continuation
approach helps avoid premature ill-conditioning and is the
basis for numerous convex and non-convex general-purpose
interior-point solvers [24].

The LCP formulation is a special-case of instantiation (29)
where the constraint set is affine in the decision variables, the
cone is the positive orthant, and where most general-purpose
solvers rely on active-set methods that strictly enforce κ = 0
at each iteration.

Cones: The generalized inequality (21), cone-product opera-
tor (26), and the identity element (27) were previously defined
for the second-order cone. For the n-dimensional positive

TABLE II: Contact violation for Atlas drop. Comparison between
Dojo and MuJoCo for foot contact penetration (millimeters) with the
floor for different time steps h (seconds). Dojo strictly enforces no
penetration. When Atlas lands, its feet remains above the ground
by an infinitesimal amount. In contrast, MuJoCo exhibits significant
penetration through the floor (i.e., negative values).

h = 0.1 h = 0.01 h = 0.001

MuJoCo failure −28 −46
Dojo +1e-12 +1e-7 +8e-6

orthant, these terms are:

Rn
++ = {u ∈ Rn |u(i) > 0, i = 1, . . . , n}, (30)

u ◦ v = (u(1)v(1), . . . , u(n)v(n)), (31)
e = 1. (32)

Violation metrics: Two metrics are used to measure
progress: The constraint violation,

cvio = ∥c(w; θ)∥∞, (33)

and complementarity violation,

κvio = max
i
{∥y(i) ◦ z(i)∥∞}. (34)

The problem (29) is considered solved when cvio < ctol and
κvio < κtol.

Residual and Jacobians: The solver aims to drive the
residual vector,

r(w; θ, κ) =

c(w; θ)

y(1) ◦ z(1) − κ1
...

y(n) ◦ z(n) − κe

 , (35)

to zero while respecting the cone constraints. The Jacobian of
this residual with respect to the decision variables,

R(w; θ) =
∂r(w; θ, ·)

∂w
, (36)

is used to compute a search direction. After a solution w∗ is
found, the Jacobian of the residual with respect to the problem
data,

D(w; θ) =
∂r(w; θ, ·)

∂θ
, (37)

is used to compute the sensitivity of the solution. These
Jacobians are not explicitly dependent on the central-path
parameter.

The non-Euclidean properties of quaternion variables are
handled with modifications to these Jacobians (36) and (37)
by right multiplying each with a matrix H containing attitude
Jacobians [16] corresponding to the quaternions in x and θ,
respectively:

R̄(w; θ) = R(w; θ)HR(w), (38)
D̄(w; θ) = D(w; θ)HD(θ). (39)

Euclidean variables have corresponding identity blocks. This
modification accounts for the implicit unit-norm constraint

Fig. 5: Astronaut simulation for energy and momentum conservation
test. Joints are initialized with zero velocities and randomly actuated
for 1 second. The simulation is visualized, from left to right.

on each quaternion variable and improves the convergence
behaviour of the solver.

Analytical line search for cones: To ensure the cone vari-
ables strictly satisfy their constraints, a cone line search is
performed for a candidate search direction. For the update:

y ← y + α∆, (40)

with step size α and search direction ∆, the solver finds the
largest α ∈ [0, 1] such that y + α∆ ∈ K. The step-size is
computed analytically for the positive orthant:

α = min
(
1, max

k|∆(k)<0

{
−
y(k)

∆(k)

})
, (41)

and second-order cone:

ν = y2(1) − y
T
(2:k)y(2:k), (42)

ζ = y(1)∆(1) − yT(2:k)∆(2:k), (43)

ρ(1) =
ζ

ν
, (44)

ρ(2:k) =
∆(2:k)√

ν
−
ζ/
√
ν +∆(1)

y(1)/
√
ν + 1

y(2:k)

ν
, (45)

α =

{
min

(
1, 1

∥ρ(2:k)∥2−ρ(1)

)
, ∥ρ(2:k)∥2 > ρ(1),

1, otherwise.
(46)

The line search over all individual cones is summarized in
Appendix A.

Update: For a given search direction, updates for Euclidean
and quaternion variables are performed. The Euclidean vari-
ables in x use a standard update:

x(1) ← x(1) + α∆(1), (47)

For each quaternion variable, the search direction exists in
the space tangent to the unit-quaternion hypersphere and is
3-dimensional. The corresponding update for i = 2, . . . , p is:

x(i) ← L(x(i))φ(α∆(i)), (48)

where L : H → R4×4 is a matrix representing a left-
quaternion matrix multiplication, and φ : R3 → H is a
mapping to a unit quaternion. The standard update is used
for the remaining decision variables y and z.

0 50 100
0

1

2

3
·10−2

time (s)

en
er

gy
dr

if
t

(J
)

10 Hz
100 Hz

1000 Hz

m
om

en
tu

m
dr

if
t

10−3 10−2 10−1
10−15

10−8

10−1

linear (N·s)

10−3 10−2 10−1

10−10

100

time step (s)

angular (N·m·s)

Dojo
MuJoCo

Fig. 6: Energy and momentum conservation comparison between
MuJoCo and Dojo for the astronaut simulation (Fig 5) using time
steps ranging from 0.001 to 0.1 second. Momentum drift is measured
after actuating the astronaut for 1 second with random controls.
Energy drift is measured over a 100 second simulation after 1
second of random actuation. Dojo achieves drift values near machine
precision and is insensitive to large time steps.

Centering: The solver adaptively relaxes (29) by computing
the centering parameters µ and σ. These values provide an
estimate of the cone-constraint violation and determine the
value of the central-path parameter that a correction step will
aim to satisfy. These values rely on the degree of the cone
[35]:

deg(K) =
n∑

i=1

deg(K(i)) = dim(K(1)) + n− 1, (49)

the complementarity violations:

µ =
1

deg(K)

n∑
i=1

(y(i))T z(i). (50)

and affine complementarity violations:

µaff =
1

deg(K)

n∑
i=1

(y(i) + α∆y(i)

)T (z(i) + α∆z(i)

), (51)

as well as their ratio:

σ = min
(
1,max

(
0, µaff/µ

))3

, (52)

As the algorithm makes progress, it aims to reduce these
violations.

Solver: For a problem instance (29), the algorithm is pro-
vided problem data and an initial point, which is projected
to ensure that the cone variables are initially feasible with
some margin. Next, an affine search direction (i.e., predictor)
is computed that aims for zero complementarity violation.
Using this direction, a cone line search is performed followed
by a centering step that computes a target relaxation for the

im
pa

ct

Fy

∂
y
/∂
F
y

Dojo
κ 10−4

10−5 10−6

10−7 10−8

Fy

gradient bundle
Σ 10−1

10−2 10−3

0th 1st

∂
x
/
∂
F
x

lin
ea

r
fr

ic
tio

n

FxFx

∂
x
/∂
F
x

no
nl

in
ea

r
fr

ic
tio

n

F

∆

dynamics

Fig. 7: Gradient comparison between randomized smoothing [32]
and Dojo’s smooth gradients. The dynamics for a box in the XY
plane that is resting on a flat surface and displaced an amount
∆ by an input F (top left). Its corresponding exact gradients are
shown in black. Gradient bundles (right column) are computed using
sampling schemes with varying covariances Σ and 500 samples.
Dojo’s gradients (middle column) are computed for different values of
κ, corresponding to the smoothness of the contact model. Compared
to the 500-sample gradient bundle, Dojo’s gradients are not noisy and
are a 100 times faster to compute with a single worker.

computation of the corrector search direction. A second cone
line search is then performed for this new search direction. A
subsequent line search is performed until either the constraint
or complementarity violation is reduced. The current point is
then updated, a new affine search direction is computed, and
the procedure repeats until the violations satisfy the solver
tolerances. Further details are provided in Appendix A.

D. Gradients

At a solution point, w∗(θ, κ), the sensitivity of the solution
with respect to the problem data, i.e., ∂w∗/∂θ, is efficiently
computed using the implicit-function theorem (17) to differ-
entiate through the solver’s residual (35).

The efficient linear-system solver used for the simulator, as
well as the computation and factorization of ∂r/∂w, is used
to compute the sensitivities for each element of the problem
data. Calculations over the individual columns of ∂r/∂θ can
be performed in parallel.

The problem data for each simulation step include: the
previous and current configurations, control input, and ad-
ditional terms like the time step, friction coefficients, and

TABLE III: Compute-time ratio between Dojo’s gradient and
simulation-step evaluations for a variety of robots. We compute
the simulator’s gradient with respect to the initial configuration,
velocity and control input. For a large system like Atlas, using
a finite-difference (FD) scheme to evaluate the dynamics Jacobian
in maximal coordinates would require at least 400 simulation-step
evaluations. Alternatively, Dojo computes this Jacobian at the cost of
approximately 4 simulation-step evaluations: a potential 100 times
speedup on a single thread.

Atlas humanoid quadruped ant half-cheetah
Dojo 3.7 4.9 2.5 2.3 1.2
FD 472.6 194.7 170.3 197.0 94.8

parameters of each body. The chain rule is utilized to compute
gradients with respect to the finite-difference velocities as well
as transformations between minimal- and maximal-coordinate
representations.

In many robotics scenarios, we are interested in gradient
information through contact events. Instead of computing
gradients for hard contact with zero or very small central-path
parameters, we use a relaxed value from intermediate solutions
w∗(θ, κ > 0) corresponding to a soft contact model. In
practice, we find that these smooth gradients greatly improve
the performance of gradient-based optimization methods.

E. Open-Source Tools

An open-source implementation of the simulator,
Dojo.jl, written in Julia, a high-level programming
language that has C-like performance, is provided.
Additionally, a Python interface, dojopy, is included.
These tools, and the following examples, are available at:
https://github.com/dojo-sim.

V. EXAMPLES

Dojo’s capabilites are highlighted through a collection
of examples, including: simulating physical phenomena,
gradient-based planning with trajectory optimization, policy-
optimization via reinforcement learning, and real-to-sim sys-
tem identification. The current implementation supports point,
sphere, and capsule collisions with flat surfaces. All of the
experiments were performed on a laptop computer with an
Intel Core i9-10885H processor and 32GB of memory.

A. Simulation

Dojo’s simulation fidelity is demonstrated with a number
of illustrative physical scenarios, including comparisons with
MuJoCo.

Friction-cone comparison: The effect of friction-cone ap-
proximation is demonstrated by simulating a box that is
initialized with lateral velocity before impacting and sliding
along a flat surface. For a pyramidal approximation, in the
probable scenario where its vertices are not aligned with the
direction of motion, velocity drift occurs for a linearized cone
implemented in Dojo and MuJoCo (Fig. 4). The complemen-
tarity problem with P contact points requires 2P (1 + 2d)
decision variables for contact and a corresponding number of

https://github.com/dojo-sim

Fig. 8: Motion plans for hopper (top left), cart-pole (bottom left),
and quadruped (right) generated using trajectory optimization.

constraints, where d is the degree of parameterization (e.g.,
double parameterization: d = 2). While it is possible to reduce
such artifacts by increasing the number of vertices in the
approximation of the second-order cone, this increases the
computational complexity. Such approximation is unnecessary
in Dojo as we handle the exact nonlinear cone constraint
efficiently and reliably with optimization tools from cone
programming; the result is accurate sliding.

Impact constraints comparison: The Atlas humanoid is
simulated dropping on to a flat surface (Fig. 1). The system
comprises 31 bodies, resulting in 403 maximal-coordinates
states, and has 36 actuated degrees-of-freedom. Each foot
has four contact points. The current implementation of Dojo
simulates this system in real time at 65 Hz. A comparison
with MuJoCo is performed measuring penetration violations
with the floor for different simulation rates (Table II).

Energy and momentum conservation: An accurate robotics
simulator conserves important physical quantities like energy
and momentum. Following the methodology from [10], we
simulate “astronaut,” a free-floating humanoid, and measure
the drift of these quantities (Fig. 6). There is no internal
damping or springs, joint limits, or contact, and gravity is
turned off. The astronaut is initialized with no linear or angular
velocity and momentum drift is computed after one second of
uniformly sampled actuation: u ∼ U(0, 0.05). Energy drift is
computed over a 100 second period after 1 second of random
actuation. MuJoCo exhibits drift in all scenarios. Characteristic
of its variational integrator, Dojo conserves both linear and
angular momentum to machine precision. Energy does not drift
for Dojo but exhibits small bounded oscillations that decrease
in amplitude as the time step decreases (Fig. 6). Conservation
of energy to machine precision with variational integrators is
possible and is a topic of current research [27].

Gradient comparison: Most simulators for robotics in the
contact setting return discontinuous gradients. This poses

TABLE IV: Trajectory-optimization results. Comparison of final cost
value, goal constraint violation, and total number of iterations for
a collection of systems systems with maximal (max.) and minimal
(min.) representations, optimized with iterative LQR. While exhibit-
ing similar performance, MuJoCo’s more mature implementation is
faster than the current version of Dojo. However, on the box-up
example, MuJoCo’s gradients cause the optimizer to fail whereas
Dojo’s smooth gradients enable it to succeed at the task.

system cost con. viol. iter.
cart-pole (max.) 30.2 1.5e-3 100
cart-pole (min.) 35.5 2.5e-5 100

cart-pole (MuJoCo) 37.0 5.2e-4 80
box right (max.) 14.5 3.3e-3 30

box right (MuJoCo) 13.5 3.2e-3 95
box up (max.) 14.5 3.1e-3 106

box up (MuJoCo) failure 1.0 -
hopper (max.) 10.2 3.7e-3 57
hopper (min.) 8.9 1.2e-3 96

hopper (MuJoCo) 26.7 1.8e-3 66
quadruped (min.) 1.8e-2 2.6e-4 20

significant difficulties to gradient-based optimization methods
that assume smooth and continuously differentiable models.
MuJoCo overcomes such difficulties and returns continuous
gradients by employing a soft-contact model and a finite
difference scheme. For LCP-based simulators that return sub-
gradients, randomized smoothing via gradient bundles has
been proposed [32]. We compare Dojo’s smooth gradients with
the latter approach.

Analysis is performed on an actuated box in two dimensions
that is resting on a surface. The sensitivity of the position
with respect to an input force is computed. We compare
gradient bundles with 500 samples to Dojo’s smooth gradients
computed with different relaxed central-path parameters (Fig.
7). We remark that, despite the relatively large number of
samples, the bundle still results in a noisy estimation for
a 1-dimensional gradient. For higher dimensions, typical in
robotics, this phenomenon will be exacerbated and more sam-
ples might be required to generate useful gradients. In contrast,
Dojo’s gradient is smooth and continuous and only requires
an inexpensive back-substitution on a pre-factorized matrix.
For comparison, we measure the ratio between the compute
times for Dojo’s gradient and simulation-step evaluation (Table
III). Our experiments indicate that gradient evaluations are
typically five times, or less, expensive compared to a step
evaluation. This indicates that Dojo’s gradient evaluation is
100 times faster than a serial bundle evaluation or requires the
same time as a bundle evaluated with 100 parallel workers.

B. Trajectory Optimization

Iterative LQR [14] uses smooth gradients from Dojo to
perform trajectory optimization on three underactuated sys-
tems. Cart-pole: This classic system [30] with two degrees-
of-freedom and one control input is tasked with performing
a swing-up over a planning horizon T = 26 with time step
h = 0.1. The pendulum starts in the downward position and
the controls are initialized with random values. Quadratic costs
are used to penalize control effort and displacement from the

Fig. 9: Trajectories for ant (top) and half-cheetah (bottom) generated
using policies trained with reinforcement learning.

goal state. The optimizer finds similar swing-up trajectories.
Box: Inputs are optimized to move a stationary rigid body

that is resting on a flat surface (Fig. 7) to a goal location that
is either to the right or up in the air 1 meter. The planning
horizon is 1 second and the controls are initialized with zeros.
Dojo uses a time step h = 0.1, whereas MuJoCo uses h =
0.01 to prevent significant contact violations with the floor.
MuJoCo fails in the scenario with the goal in the air, while
Dojo succeeds at both tasks.

Hopper: The robot [26] with m = 3 controls and n = 14
degrees-of-freedom is tasked with moving to a target pose over
1 second. Similar, although not identical, models and costs
are used. Dojo uses a time step h = 0.05 whereas MuJoCo
uses h = 0.01. The hopper is initialized with controls that
maintain its standing configuration. Quadratic costs are used to
penalize control effort and displacement from an intermediate
state in the air and the goal pose. The optimizer typically finds
a single-hop motion.

Quadruped: The system with m = 12 controls and n = 36
degrees-of-freedom is tasked with moving to a goal location
over a planning horizon T = 41 with time step h = 0.05.
Controls are initialized to compensate for gravity and there are
costs on tracking a target kinematic gait and control inputs.
The optimizer finds a dynamically feasible motion that closely
tracks the kinematic plan.

In addition to optimizing in the maximal-coordinates space,
we also transform this state to a minimal representation for
comparison. Gradients are computed with κ = 3e−4. The
results are visualized (Fig. 8) and summarized in Table IV.

C. Reinforcement Learning

Using Dojo, we implement Gym-like environments [2, 8]:
ant and half-cheetah (Fig. 9). We train static linear policies
for locomotion using Augmented Random Search (ARS) [20].
This is a gradient-free approach coupling random search with
a number of simple heuristics. Additionally, we train the
same policies using augmented gradient search (AGS) which
replaces the stochastic-gradient estimation of ARS with the
simulator’s analytical gradient.

Half-cheetah: This planar system with m = 6 controls and
n = 18 degrees-of-freedom is rewarded for forward velocity

TABLE V: Reinforcement-learning results. Comparison of total
reward, number of simulation-step and gradient evaluations for a
collection of policies trained with Augmented Random Search (ARS)
[20] and Augmented Gradient Search (AGS). The results are averaged
over the best 3 out of 5 runs with different random seeds. AGS which
relies on Dojo’s gradients reaches similar performance levels as ARS
while being 5 to 10 times more sample efficient.

system reward sim. eval. grad. eval.
half-cheetah (ARS) 46 ± 24 2.9e+4 0

ant (ARS) 64 ± 15 1.6e+5 0
half-cheetah (AGS) 44 ± 24 4.8e+3 4.8e+3

ant (AGS) 54 ± 28 1.5e+4 1.5e+4

and penalized for control effort over a horizon T = 80 with
time step h = 0.05.

Ant: The system has m = 8 controls and n = 28 degrees-
of-freedom and is rewarded for forward motion and staying
alive and is penalized for control effort and contact over a
horizon T = 150 with time step h = 0.05.

The Gym environments use MuJoCo with time steps h =
0.01, since larger steps result is significant interpenetration of
the robots with the floor. In contrast, Dojo is able to train
reliably in environments with hard contact using a larger time
step. Training is performed for a fixed number of steps and
the policy is compared over the 3 best out of 5 runs for
different random seeds. Results are summarized in Table V.
The gradient-based approach closely matches ARS in terms
of accumulated reward while requiring 5 to 10 times fewer
dynamics evaluations, where for each simulation step, AGS
computes the dynamics gradient with a computational cost
comparable to one dynamics evaluation.

D. Real-To-Sim

System identification is performed on an existing real-world
dataset of trajectories collected by throwing a box on a table
with different initial conditions [25]. We aim to recover a set
of parameters θ = (µ, p(1), . . . , p(8)) that include the friction
coefficient µ, and 3-dimensional vectors p(i) that represent the
position of vertex i of the box with respect to its center of
mass.

Each trajectory is decomposed into T −2 triplets of consec-
utive configurations: Z = (z−, z, z+), where T is the number
of time steps in the trajectory. Using the initial conditions z−, z
from a tuple, and an estimate of the system’s parameters θ,
Dojo performs one-step simulation:

ẑ+ = s(z−, z, θ), (53)

to predict the next state, ẑ+. Additionally, Dojo computes a
smooth Jacobian, ∂ẑ+/∂θ for the dynamics with respect to
the parameters using smoothness: κ = 3e−4.

The parameters are learned by minimizing the following
loss:

L(D, θ) =
∑
Z∈D

L(Z, θ) =
∑
Z∈D

1

2
||s(z−, z, θ)− z+||2W , (54)

where || · ||W is a weighted norm, which aims to minimize the
difference between the ground-truth trajectories and simulator

iter. 1 iter. 5 iter. 50 ground
truth

Fig. 10: System identification. Top right: Learning box geometry and
friction cone to less than 5% error. Bottom: Simulated trajectory of
the box using the learned properties (blue) compared to ground truth
(orange).

predictions. We use a Gauss-Newton method that utilizes
gradients:

∂L

∂θ
=
∂s

∂θ

T

W (s(z−, z, θ)− z+) , (55)

and approximate Hessians:

∂2L

∂θ2
≈ ∂s

∂θ

T

W
∂s

∂θ
. (56)

We successfully learn parameters that match to within 5% of
the actual geometry and friction properties of the box. Using
these values, we simulate the system and compare it to the
ground-truth simulation (Fig. 10).

VI. DISCUSSION

Summary: Dojo makes several advancements over previous
robotics simulators: First, a maximal-coordinates state repre-
sentation is coupled with a numerically improved variational
integrator. This large, sparse representation can be efficiently
optimized and provides more information from the simula-
tor compared to minimal-coordinate representations [3]. As
demonstrated in the examples, the variational integrator better
conserves energy and momentum compared to higher-order
explicit and lower-order implicit counterparts while being
stable using relatively large time steps. Further, the improved
friction model requires less decision variables and produces
higher-quality simulation results, particularly in sliding sce-
narios. Next, a custom interior-point solver was developed
specifically for solving NCPs that is numerically robust, re-
quires practically no hyperparameter tuning for good perfor-
mance across numerous systems, and handles special cone and
quaternion variables. Finally, we present an efficient approach
for returning gradients from the simulator. The smoothness of
these gradients is easily set using a single intuitive parameter
and they provide useful information through contact events.
In addition to building and providing an open-source tool, the

physics and optimization improvements presented can improve
many existing simulators.

In terms of features, reliability, and wall-clock time,
MuJoco—the product of a decade of excellent software
engineering—is impressive. As our active development of
Dojo continues, we expect to make significant progress in all
of these areas. However, fundamentally, Dojo’s approach of
solving an NCP with a primal-dual interior-point method will
always be computationally more expensive compared to Mu-
JoCo’s simplified and approximate contact-dynamics formula-
tion which can never entirely recover accurate solutions even at
higher sampling frequencies. This is the fundamental tradeoff
Dojo makes for robotics applications: greater computational
cost for accurate physics and smooth gradients.

Future directions: A number of future improvements to
Dojo are planned. First, Dojo currently implements collision
detection between capsules and flat surfaces. Natural exten-
sions include support for self-collision and general curved
surfaces. The former requires additional care to handle the
cycles introduced to the system’s graph structure and effi-
ciently solve the resulting linear system, while the latter is
possible by solving and differentiating through a lower-level
minimum-distance optimization problem. Another improve-
ment is adaptive time stepping. Similar to advanced numerical
integrators for stiff systems, Dojo should take large time steps
when possible and adaptively modify the time step in cases of
numerical difficulties or physical inaccuracies. Finally, greater
exploitation of algorithmic parallelism in Dojo would enable
faster simulation and optimization.

Perhaps the most important remaining question is whether
the physics and optimization improvements from this work
translate into better transfer of simulation results to successes
on real-world robotic hardware. In this thrust, future work
will explore the transfer of learned control policies trained
with Dojo to hardware and deployment of the simulator
in model-predictive-control algorithms on hopper, quadruped,
and humanoid hardware.

In conclusion, we have presented a new simulator, Dojo,
specifically designed for robotics. This tool is the culmination
of a number of improvements to physics models and under-
lying optimization routines, aiming to advance state-of-the-art
simulators for robotics by improving physical accuracy and
differentiability.

ACKNOWLEDGEMENTS

The authors would like to thank Jan Brüdigam
for his contributions to the open-source li-
braries ConstrainedDynamics.jl and
GraphBasedSystems.jl which served as a foundation
for Dojo, as well as early technical discussions and support;
and Suvansh Sanjeev for assistance with the Python interface.
Toyota Research Institute provided funds to support this
work.

REFERENCES

[1] S. Boyd and L. Vandenberghe. Convex optimization.
Cambridge University Press, 2004.

[2] G. Brockman, V. Cheung, L. Pettersson, J. Schneider,
J. Schulman, J. Tang, and W. Zaremba. OpenAI Gym,
2016.

[3] J. Brüdigam and Z. Manchester. Linear-Quadratic op-
timal control in maximal coordinates. arXiv preprint
arXiv:2010.05886, 2020.

[4] J. Brüdigam and Z. Manchester. Linear-time varia-
tional integrators in maximal coordinates. arXiv preprint
arXiv:2002.11245, 2020.

[5] J. Brüdigam, J. Janeva, S. Sosnowski, and S. Hirche.
Linear-time contact and friction dynamics in maximal
coordinates using variational integrators. arXiv preprint
arXiv:2109.07262, 2021.

[6] R. W. Cottle, J.-S. Pang, and R. E. Stone. The linear
complementarity problem. SIAM, 2009.

[7] U. Dini. Lezioni di analisi infinitesimale, volume 1.
Fratelli Nistri, 1907.

[8] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and
P. Abbeel. Benchmarking deep reinforcement learning
for continuous control. In International Conference on
Machine Learning, pages 1329–1338. PMLR, 2016.

[9] R. Elandt, E. Drumwright, M. Sherman, and A. Ruina.
A pressure field model for fast, robust approximation of
net contact force and moment between nominally rigid
objects. In 2019 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 8238–8245.
IEEE, 2019.

[10] T. Erez, Y. Tassa, and E. Todorov. Simulation tools
for model-based robotics: Comparison of Bullet, Havok,
MuJoCo, ODE and PhysX. In 2015 IEEE International
Conference on Robotics and Automation (ICRA), pages
4397–4404. IEEE, 2015.

[11] C. D. Freeman, E. Frey, A. Raichuk, S. Girgin, I. Mor-
datch, and O. Bachem. Brax-A differentiable physics
engine for large scale rigid body simulation. arXiv
preprint arXiv:2106.13281, 2021.

[12] M. Geilinger, D. Hahn, J. Zehnder, M. Bächer,
B. Thomaszewski, and S. Coros. ADD: Analytically
differentiable dynamics for multi-body systems with fric-
tional contact. ACM Transactions on Graphics (TOG),
39(6):1–15, 2020.

[13] E. Heiden, D. Millard, E. Coumans, Y. Sheng, and G. S.
Sukhatme. NeuralSim: Augmenting differentiable simu-
lators with neural networks. In Proceedings of the IEEE
International Conference on Robotics and Automation
(ICRA), 2021. URL https://github.com/google-research/
tiny-differentiable-simulator.

[14] T. A. Howell, S. Le Cleac’h, S. Singh, P. Florence,
Z. Manchester, and V. Sindhwani. Trajectory optimiza-
tion with optimization-based dynamics. arXiv preprint
arXiv:2109.04928, 2021.

[15] Y. Hu, L. Anderson, T.-M. Li, Q. Sun, N. Carr, J. Ragan-

Kelley, and F. Durand. Difftaichi: Differentiable pro-
gramming for physical simulation. ICLR, 2020.

[16] B. E. Jackson, K. Tracy, and Z. Manchester. Planning
with attitude. IEEE Robotics and Automation Letters, 6
(3):5658–5664, 2021.

[17] D. Kang and J. Hwangho. SimBenchmark, 2021. URL
https://leggedrobotics.github.io/SimBenchmark/.

[18] M. S. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret.
Applications of second-order cone programming. Linear
Algebra and its Applications, 284(1-3):193–228, 1998.

[19] Z. Manchester and S. Kuindersma. Variational contact-
implicit trajectory optimization. In Robotics Research,
pages 985–1000. Springer, 2020.

[20] H. Mania, A. Guy, and B. Recht. Simple random search
of static linear policies is competitive for reinforcement
learning. In Advances in Neural Information Processing
Systems, pages 1800–1809, 2018.

[21] J. E. Marsden and M. West. Discrete mechanics and
variational integrators. Acta Numerica, 10:357–514,
2001.

[22] S. Mehrotra. On the implementation of a primal-dual
interior point method. SIAM Journal on Optimization, 2
(4):575–601, 1992.

[23] J. J. Moreau. On unilateral constraints, friction and plas-
ticity. In New Variational Techniques in Mathematical
Physics, pages 171–322. Springer, 2011.

[24] J. Nocedal and S. J. Wright. Numerical Optimization.
Springer, second edition, 2006.

[25] S. Pfrommer, M. Halm, and M. Posa. Contact-
Nets: Learning discontinuous contact dynamics with
smooth, implicit representations. arXiv preprint
arXiv:2009.11193, 2020.

[26] M. H. Raibert, H. B. Brown Jr., M. Chepponis, J. Koech-
ling, J. K. Hodgins, D. Dustman, W. K. Brennan,
D. S. Barrett, C. M. Thompson, J. D. Hebert, W. Lee,
and B. Lance. Dynamically stable legged locomotion.
Technical report, Massachusetts Institute of Technology
Cambridge Artificial Intelligence Lab, 1989.

[27] H. Sharma, M. Patil, and C. Woolsey. Energy-preserving
variational integrators for forced lagrangian systems.
Communications in Nonlinear Science and Numerical
Simulation, 64:159–177, 2018.

[28] D. E. Stewart and J. C. Trinkle. An implicit time-
stepping scheme for rigid body dynamics with inelastic
collisions and coulomb friction. International Journal for
Numerical Methods in Engineering, 39(15):2673–2691,
1996.

[29] Y. Tassa, T. Erez, and E. Todorov. Synthesis and
stabilization of complex behaviors through online tra-
jectory optimization. In 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages
4906–4913. IEEE, 2012.

[30] R. Tedrake. Underactuated robotics: Algorithms for
walking, running, swimming, flying, and manipulation
(course notes for MIT 6.832). Downloaded in Fall, 2021.

[31] R. Tedrake and the Drake Development Team. Drake:

https://github.com/google-research/tiny-differentiable-simulator
https://github.com/google-research/tiny-differentiable-simulator
https://leggedrobotics.github.io/SimBenchmark/

Model-based design and verification for robotics, 2019.
URL https://drake.mit.edu.

[32] H. J. Terry Suh, T. Pang, and R. Tedrake. Bundled
gradients through contact via randomized smoothing.
arXiv preprint arXiv:2109.05143, 2021.

[33] E. Todorov. Convex and analytically-invertible dynamics
with contacts and constraints: Theory and implementa-
tion in MuJoCo. In 2014 IEEE International Conference
on Robotics and Automation (ICRA), pages 6054–6061.
IEEE, 2014.

[34] E. Todorov, T. Erez, and Y. Tassa. MuJoCo: A physics
engine for model-based control. In 2012 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems,
pages 5026–5033. IEEE, 2012.

[35] L. Vandenberghe. The CVXOPT linear and
quadratic cone program solvers. Online:
http://cvxopt.org/documentation/coneprog.pdf, 2010.

[36] K. Werling, D. Omens, J. Lee, I. Exarchos, and C. K.
Liu. Fast and feature-complete differentiable physics
for articulated rigid bodies with contact. arXiv preprint
arXiv:2103.16021, 2021.

https://drake.mit.edu

Algorithm 1 Analytical Line Search For Cones

1: procedure CONELINESEARCH(w,∆, τort, τsoc)
2: αort

y ← α(y(1), τort∆y(1)

) ▷ Eq. 41
3: αort

z ← α(z(1), τort∆z(1)

) ▷ Eq. 41
4: αsoc

y ← min
i∈{2,...,n}

α(y(i), τsoc∆y(i)

) ▷ Eq. 46

5: αsoc
z ← min

i∈{2,...,n}
α(z(i), τsoc∆z(i)

) ▷ Eq. 46

6: Return min(αort
y , αort

z , αsoc
y , αsoc

z)

APPENDIX A
SOLVER ALGORITHMS

The cone line search for all individual cones is summarized
in Algorithm 1. Additional tolerances τ ∈ [0.9, 1] are used to
improve numerical reliability of the solver. The primal-dual
interior-point algorithm used to solve (29) is summarized in
Algorithm 2.

Parameters: The algorithm parameters include τsoc
max to

prevent the iterates from reaching the boundaries of the cones
too rapidly during the solve, τmin to ensure we are aiming
at sufficiently large steps, and β is the decay rate of the step
size α during the line search. In practice, ctol and κtol are the
only parameters the user might want to tune. Larger tolerance
values leads to softer contact models, which might be desirable
when computing gradients of the dynamics.

Output: The algorithm outputs a solution w that satisfies
the solver tolerance levels and, optionally, the Jacobian of the
solution with respect to the problem parameters θ.

APPENDIX B
QUATERNION ALGEBRA

We use a set of conventions for notating standard quaternion
operations adopted from [4, 16] in the rotational part of our
variational integrator (19). Quaternions are written as four-
dimensional vectors:

q = (s, v) = (s, v1, v2, v3) ∈ H, (57)

where s and v are scalar and vector components, respectively.
Dojo employs unit quaternions (i.e., qT q = 1) to represent
orientation, providing a mapping from the local body frame to
a global inertial frame. Quaternion multiplication is performed
using linear algebra (i.e., matrix-vector and matrix-matrix
products). Left and right quaternion multiplication,

qa ⊗ qb =
[

sasb − (va)T vb

savb + sbva + va × vb
]

(58)

= L(qa)qb = R(qb)qa, (59)

where × is the standard vector cross product, is represented
using the matrices:

L(q) =

[
s −vT
v sI3 + skew(v)

]
∈ R4×4, (60)

R(q) =

[
s −vT
v sI3 − skew(v)

]
∈ R4×4, (61)

Algorithm 2 Primal-Dual Interior-Point Solver

1: procedure SOLVER(x0, y0, z0, θ)
2: Parameters: τsoc

max = 0.99, τmin = 0.95
3: ctol = 10−6, κtol = 10−6, β = 0.5
4: Initialize: x = x0, y = y0 ⪰ 0, z = z0 ⪰ 0
5: cvio, κvio ← VIOLATION(w) ▷ (33, 34)
6: Until cvio < ctol and κvio < κtol do
7: ∆aff ← −R̄−1(w; θ)r(w; θ, 0)

8: αaff ← CONESEARCH(w,∆aff, 1, 1)
9: µ, σ ← CENTER(y, z, αaff,∆aff) ▷ (49-52)

10: κ← max(σµ, κtol/5)
11: ∆← −R̄−1(w; θ)r(w; θ, κ)
12: τort ← max(τmin, 1−max(cvio, κvio)

2)

13: τsoc ← min(τsoc
max, τ

ort)
14: α← CONESEARCH(w,∆, τort, τsoc)
15: c∗vio, κ

∗
vio ← cvio, κvio

16: ŵ ← UPDATE(w,∆, α) ▷ (47, 48)
17: cvio, κvio ← VIOLATION(ŵ) ▷ (33, 34)
18: Until cvio ≤ c

∗
vio or κvio ≤ κ

∗
vio do

19: α← βα
20: ŵ ← UPDATE(w,∆, α) ▷ (47, 48)
21: cvio, κvio ← VIOLATION(ŵ) ▷ (33, 34)
22: end
23: w ← ŵ
24: end
25: ∂w∗/∂θ ← −R̄−1(w∗; θ)D̄(w∗; θ) ▷ (17)
26: Return w, ∂w∗/∂θ

where,

skew(x) =

 0 −x3 x2
x3 0 −x1
−x2 x1 0

 , (62)

is defined such that,

skew(x)y = x× y, (63)

and I3 is a 3-dimensional identity matrix. The vector compo-
nent of a quaternion,

v = V q, (64)

is extracted using the matrix:

V =
[
0 I3

]
∈ R3×4, (65)

and quaternion conjugate:

q† =

[
s
−v

]
= Tq, (66)

is computed using:

T =

[
1 0T

0 −I3

]
∈ R4×4. (67)

	Introduction
	Existing State-of-the-Art
	Technical Background
	Maximal Coordinates
	Complementarity-Based Contact Models
	Implicit-Function Theorem

	Dojo
	Variational Integrator
	Contact Model
	Primal-Dual Interior-Point Solver
	Gradients
	Open-Source Tools

	Examples
	Simulation
	Trajectory Optimization
	Reinforcement Learning
	Real-To-Sim

	Discussion
	Appendix A: Solver Algorithms
	Appendix B: Quaternion Algebra

