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Abstract— We present an algorithm to perform fuel-optimal
stationkeeping for spacecraft in unstable halo orbits with ad-
ditional constraints to ensure safety in the event of a control
failure. To enhance safety, we enforce a half-space constraint on
the spacecraft trajectory. This constraint biases the trajectory
toward the unstable invariant manifold that escapes from the
orbit away from the planetary body, reducing the risk of colli-
sion. We formulate a convex trajectory-optimization problem
to autonomously generate impulsive spacecraft maneuvers to
loosely track a halo orbit using a receding-horizon controller.
Our solution also provides a safe exit strategy in the event that
propulsion is lost at any point in the mission. We validate
our algorithm in simulations of the three-body Earth-Moon and
Saturn-Enceladus systems, demonstrating both low total delta-v
and a safe contingency plan throughout the mission.
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1. INTRODUCTION
Halo-orbit missions are essential to our understanding of the
solar system. Examples of such missions include the James
Webb Space Telescope, an infrared telescope orbiting the
Sun-Earth L2 libration point to investigate the beginnings
of the universe [1], and the Genesis mission, which orbited
the Sun-Earth L1 libration point analyzing the solar wind to
explore the origins of the solar system [2]. These orbits are
periodic, highly unstable, and require several station-keeping
maneuvers per orbit to track.

Given the importance and challenges of halo-orbit missions,
various station-keeping strategies have been developed over
the years to maintain these orbits efficiently. Howell and
Pernicka [3] introduced the target-point strategy, which mini-
mizes a weighted cost function that penalizes deviations from
the nominal orbit and control effort. However, the timing
of the maneuvers is not optimized and the method leads to
excessive fuel usage. Gomez, et al. [4] later developed a
loose-control station-keeping strategy using dynamical sys-
tems theory that removed the unstable component of the
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invariant manifold along the orbit, but this method does not
optimize fuel consumption, a crucial aspect for long-term
missions. Maneuver locations are typically predetermined
by the mission designer and delta-v is calculated using a
differential corrector. For example, the Solar and Helio-
spheric Observatory (SOHO) mission calculated maneuvers
anywhere along the orbit using a differential corrector with
the objective of making the x-component of velocity zero at
the Sun-Earth line crossing in the rotating frame [5]. Pavlak
also uses a single shooting method and compares burning at
maximum y amplitudes of the orbit and four predetermined
maneuver locations to show that four burns are superior in
terms of fuel consumption [6]. However, the major drawback
of shooting methods is the high dependence on the initial
guess of the free variable along with the formulation of the
problem to prevent ill-conditioning [7]. Optimization-based
stationkeeping was then introduced by Pavlak by formulat-
ing the station-keeping problem as a nonlinear constrained
optimization problem with a quadratic objective penalizing
fuel consumption [8]. The quadratic objective function is not
an accurate measure for fuel consumption which leads to a
continuous thrust behavior, excessive fuel consumption, and
suboptimal maneuver locations.

Contingency planning is another critical part of space mis-
sions. This problem has been explored in the application of
spacecraft rendezvous. Specifically, Marsillach uses reach-
ability theory to ensure passive safety in the event of a
thrust failure [9]. However, this method is computationally
expensive, as these reachable sets need to be calculated for
a large portion of the state space. The period of some
halo orbits also presents a significant challenge to spacecraft
navigation and control. Typically, the navigation process at
the Jet Propulsion Laboratory (JPL) requires a minimum of
24 hours to plan and perform a maneuver. However, this time
frame is incompatible with some halo orbits that have much
shorter periods. For example, an L2 halo orbit in the Saturn-
Enceladus system has a period of 16 hours, which is less
than the standard maneuver planning window. This mismatch
between orbital periods and traditional navigation processes
highlights the need for autonomous maneuver planning and
execution.

To address these challenges, this paper introduces a method to
autonomously optimize impulsive station-keeping maneuvers
along the orbit to reduce fuel consumption and provide a
safe orbit departure strategy in the event that propulsion
is completely lost during the mission. Our contributions
include:

• A convex optimization approach for the station-keeping
problem that autonomously minimizes fuel consumption, op-
timizes maneuver locations, and ensures a safe contingency
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plan in the event of a propulsion failure
• A receding-horizon control algorithm that re-solves for
maneuvers twice every orbit to compensate for modeling and
state-estimation errors
• Simulation results in the Earth-Moon and Saturn-
Enceladus systems demonstrating the effectiveness of our
receding-horizon controller.

The paper proceeds as follows: In Section 2 we introduce
the circular restricted three-body problem (CR3BP) along
with concepts from dynamical-systems theory used in our
analysis. Section 3 derives our trajectory optimization formu-
lation and a receding-horizon control strategy. Closed-loop
simulation results in two environments presented in Section 4.
Finally, Section 5 summarizes our conclusions and directions
for future work.

2. BACKGROUND
This section provides a brief review of the CR3BP along with
concepts from dynamical systems theory used in our analysis.
We refer interested readers to [10] and [11] for more detailed
treatments.

The Circular Restricted Three-Body Problem

The CR3BP describes the motion of a small third body in
the presence of two larger primary bodies. The two primary
masses m1 and m2 are assumed to move in circular orbits
about their common barycenter, and the third body is assumed
to have infinitesimal mass. The mass of m1 is also assumed
to be larger than m2, and these masses are normalized to
unity. The distance between m1 and m2 and the rotation speed
of m1 and m2 about the barycenter are similarly normalized
to improve numerical conditioning. To eliminate the time
dependence of the dynamics, we use a rotating frame about
the barycenter so that the two primary masses are fixed on the
x-axis of the rotating frame. In this work, we performed all
the analyses using two systems: the Earth-Moon system and
the Saturn-Enceladus system.

We augment the CR3BP equations with a normalized thrust
(acceleration) input u= [ux,uy,uz]. The state of the spacecraft
x consists of its position (qx,qy,qz) and velocity (vx,vy,vz) in
nondimensionalized units. The controlled continuous CR3BP
equations of motion ẋ = f (x,u) that describe the state of the
spacecraft in the rotating frame are given by (1),

q̇x = vx

q̇y = vy

q̇z = vz

v̇x =
∂U
∂qx

+2vy +ux

v̇y =
∂U
∂qy

−2vx +uy

v̇z =
∂U
∂qz

+uz

(1)

where U is the augmented potential expressed in (2) and µ is
the characteristic mass parameter of the CR3BP.

U =
1
2
(q2

x +q2
y)+

1−µ

r1
+

µ

r2

r1 = [(qx +µ)2 +q2
y +q2

z ]
1
2

r2 = [(qx −1+µ)2 +q2
y +q2

z ]
1
2

(2)

We discretize the continuous dynamics by employing a
fourth-order Runge-Kutta integrator, resulting in the discrete-
time dynamics model xk+1 = fd(xk,uk), where the control
input uk is discretized using a zero-order hold. This model
provides the next state of the spacecraft xk+1 given a state xk
and a control uk at the time step k.

Lagrange Points, Periodic Orbits, and Invariant Manifolds

The CR3BP has five equilibrium points, also called “Libra-
tion” or “Lagrange” points and commonly numbered L1-L5.
The unstable Libration points, L1-L3, are surrounded by low-
energy unstable orbits, known as “halo orbits,” where very
small perturbations lead to large deviations from the orbit.
These orbits are useful for mission design, as they maximize
observation efficiency [12]. However, halo orbits require
satellites to execute frequent station-keeping maneuvers due
to instability. We generated an unstable halo orbit about L2
using differential correction with a third-order Richardson
expansion as an initial guess [10]; however, obtaining halo
orbit initial conditions is also possible via the JPL Solar
System Dynamics site [13]. This generated orbit then forms
the reference trajectory that the spacecraft tracks.

Along these orbits, there exist sets of low-energy trajecto-
ries that escape and approach the periodic orbit, known as
invariant manifolds. These manifolds are tube-like structures
that are used for various mission-design applications, such as
the design of gravity-assist flybys, low-energy capture, and
escape around bodies in the solar system. To obtain unstable
manifolds, we first calculate the continuous state-transition
matrix Φ by integrating the matrix differential equation (3).

Φ̇(t) =
∂ f
∂x

Φ(t)

Φ(0) = I
(3)

The state-transition matrix evaluated over one orbit period T
is known as the monodromy matrix,

M = Φ(T ). (4)

An unstable eigenvector of M, which we label v, is locally
tangent to the unstable manifold. We use this unstable di-
rection to generate initial conditions for trajectories w on the
unstable manifold and then integrate the continuous dynamics
f (x,u) forward to time τ using a higher-order integrator.
These trajectories are calculated along the halo orbit each at
discrete timesteps tk and their computation is summarized in
(5), where ε is a parameter that scales the magnitude of the
perturbation in the unstable direction.

w(tk) =
∫

τ

0
f (x(tk)± εΦ(tk)v,0)dτ tk ∈ [0,T ] (5)

Figure 1 shows example halo orbits to be tracked by our
method, along with their unstable manifolds. Adding and
subtracting the perturbation εΦ(tk)v results in both sides of
the unstable manifold.
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(b) Halo orbit around L2 in the Saturn-Enceladus system with a pe-
riod of 16.21 hours. Adding the perturbation results in the unstable
invariant manifold on the left, and subtracting the perturbation leads
to the right unstable manifold

Figure 1: Reference halo orbits in the Earth-Moon and
Saturn-Enceladus system along with their unstable invariant
manifolds that we use for a safe exit.

3. OPTIMIZATION-BASED STATIONKEEPING
This section derives our trajectory-optimization formulation
and receding-horizon control strategy to solve for fuel op-
timal stationkeeping maneuvers. We also describe the lin-
earized dynamics used in our convex optimization problem.

Linearized Dynamics

We discretize the reference halo orbit into N knot points. Us-
ing a first-order Taylor expansion, we linearize the nonlinear
discrete-time dynamics at each knot point x̄k, leading to the
linear state-error dynamics:

∆xk+1 ≈ Ak∆xk +Bkuk

Ak =
∂ fd

∂xk

∣∣∣∣
(x̄k,uk)

Bk =
∂ fd

∂uk

∣∣∣∣
(x̄k,uk)

∆xk = xk − x̄k

(6)

where Ak and Bk are the discrete dynamics Jacobians evalu-
ated at the reference trajectory at timestep k.

Trajectory Optimization

We pose the station-keeping problem as a trajectory opti-
mization problem in (7), where lk(xk,uk) is the stage cost,
lN(xk,uk) is the terminal cost, g(xk,uk) are the equality
constraints and h(xk,uk) are the inequality constraints. We
solve the problem over a two-orbit horizon 2N, where N is
the number of discrete knot points along the orbit. Convex
cost and constraint functions are chosen to guarantee that the
solution is globally optimal and can be solved efficiently [14].

minimize
x1:2N ,u1:2N−1

J =
2N−1

∑
k

lk(xk,uk)+ lN(xk,uk)

subject to g(xk,uk) = 0
h(xk,uk)≤ 0

(7)

We focus on minimizing fuel consumption along the orbit
while satisfying mission objectives and constraints. The
mission objectives include completing a certain number of
revolutions around a halo orbit to obtain a large number of
observations while minimizing fuel consumption. We chose
to minimize the L1 norm of the thrust vector because uk
corresponds directly to delta-v in discrete time, and the sum
of delta-v over time approximates the total fuel consumption.
The L1 norm also encourages impulsive solutions, which is
desired when minimizing fuel [15]:

l(xk,uk) = ||uk||1 (8)

Instead of a tracking cost, we employ constraints on maxi-
mum state error. Two variants of the state constraint were
tested: The first constraint is a Euclidean ball constraint D,
which restricts the deviation from the reference trajectory ∆x
to a user-defined radius as shown in (9). The state radius
r consists of the position limit rq and the velocity limit rv,
which are determined depending on how closely the user
wants the satellite to follow the reference trajectory.

This constraint will allow the spacecraft to drift from the
reference trajectory and only provide a control impulse when
necessary.
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(a) Ellipsoid cost-to-go constraint with the invariant manifold half-
space constraint

(b) Euclidean ball constraint with the invariant manifold half-space
constraint

Figure 2: 2D projection of the state constraints along the
orbit xk. The feasible set is the area intersected with green
lines.

D(∆xk,r) = {∆xk | ||∆xk||2 ≤ r}

r =
[

rq
rv

]
(9)

The second constraint is an ellipsoid determined by taking
a level set of the quadratic cost-to-go function computed by
solving a Linear-Quadratic Regulator (LQR) tracking prob-
lem. This state constraint is better informed by the dynam-
ics of the problem, therefore we expect better performance
compared to the Euclidean-ball constraint. Since the orbit is
periodic, the cost-to-go is also periodic for this system [16].
In (10), Qk and Rk are cost weighting matrices for the states
and controls, while QN is the terminal cost weighting matrix.
The periodic cost-to-go term Pk was calculated by solving the
Ricatti recursion until convergence to a periodic solution [17].
In (11), c is a parameter that controls the size of the ellipse.

J =
2N−1

∑
k=1

1
2

xT
k Qkxk +

1
2

uT
k Rkuk +

1
2

xT
NQNxN (10)

E(∆xk,Pk) = {∆xk | ∆xT
k Pk∆xk ≤ c} (11)

Next, an initial-state equality constraint is imposed to set the
initial delta state to reflect the current observed state of the
system x0.

∆x1 = ∆x0 (12)

Contingency Constraint

Lastly, we impose a half-space constraint H on the state
deviation from the reference trajectory ∆xk. This constraint
serves as a contingency measure, biasing the trajectory to
include a component in the unstable manifold direction. The
purpose is to ensure that, in the event of complete propulsion
failure, the spacecraft will passively depart the halo orbit
away from the planetary body. As demonstrated in [18],
any trajectory with a component in the unstable direction
will eventually leave the halo through the unstable manifold
if no propulsion is applied. This capability allows mission
designers to re-plan the mission in safe mode if thrust is
regained at a later time, and also prevents collisions with
planetary bodies in case of propulsion failures.

The direction of the orbit exit trajectory (either left or right) is
generally determined by the sign on vu, as illustrated in Fig.
5. We assume the half-plane constraint partitions the state
space in a way that allows the spacecraft to bias its trajectory
toward the unstable manifold that safely exits the halo orbit
away from the planetary body. For example, in the Earth-
Moon system, the goal is to ensure a safe exit through the
right of the L2 point to avoid the Moon, which is located on
the left of the L2 point. This contingency constraint provides
a local guarantee of a safe exit trajectory when the spacecraft
is simulated without propulsion over a short time scale, but
may not hold on longer time scales due to the highly nonlinear
and chaotic nature of the CR3BP dynamics.

In (13), Φk is the state transition matrix at time step k,
and multiplying the unstable direction vu propagates this
unstable direction to any time step k. The parameter a in (13)
determines the distance of the half-plane from the state xk
which is analogous to ε in (5). A visual representation of the
ellipsoidal, Euclidean ball, and half-space constraint is shown
in Fig. 2.

H(∆xk,Φk) = {∆xk | ∆xT
k (Φkvu)≥ a} (13)

Our full problem formulation is,

minimize
u1:2N−1

J =
2N−1

∑
k=1

||uk||1

subject to (6), (12)
(9) or (11), (13),

(14)

where the equality constraints are the linearized discrete-
time error dynamics and initial condition. The inequality
constraints consist of a Euclidean ball or ellipsoidal state
constraint and an unstable direction half-space constraint.
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4. SIMULATION EXPERIMENTS
We simulated 100 revolutions around the L2 halo orbit shown
in Fig. 1a. The CR3BP dynamics are nondimensionalized
by the constants in Table 1. To solve the optimization
problem in (14), we use Convex.jl [19], a convex optimization
modeling framework in Julia [20], and the Mosek solver
[21]. To simulate the nonlinear CR3BP dynamics, we use a
higher-order integrator, specifically the Tsitouras-Papakostas
8/7 Runge-Kutta method in DifferentialEquations.jl [22]. To
mitigate linearization errors, we implemented a receding-
horizon controller that solves the optimization problem in
(14) for a two-revolution horizon. We then simulated half
of an orbit of optimal controls on the discrete nonlinear
dynamics to obtain the new initial state for the next solu-
tion. This iterative process is then repeated for the specified
mission time. The output of the solver is thrust commands;
therefore, we approximate fuel consumption as delta v which
is approximated as uk∆t. We validate our algorithm in two
different settings to assess its efficiency in computing fuel-
efficient maneuvers and devising a secure contingency plan
in case of losing control. All the simulation code is available
on Github2

Table 1: Simulation Constants

Constant Earth-Moon Saturn-Enceladus

µ 1.215 ×10−2 1.901 ×10−7

LU [km] 3.850 ×105 2.38529 ×105

TU [days] 4.349 0.2189

Earth-Moon Simulation

For this experiment, the initial delta state condition also know
as “injection error” was set to 385 m in the x position and
1.856 m/s in the y-component of the velocity. The goal is
to loosely follow the orbit from Fig. 1a and ensure a safe
departure trajectory throughout the entire mission in the event
of an emergency. The halo orbit was discretized into 41 knot
points, which resulted in a timestep ∆t = 8.911 hours. First,
we compare the fuel consumption between the Euclidean
ball and the ellipsoidal constraints. The state weighting
matrices Qk and QN for the cost-to-go calculation were set to
1×10−3I(6) where I(6) is a 6 × 6 identity matrix, the control
weight matrix Rk was set to 1× 103I(3), and c = 1× 104 in
(11). This cost-to-go metric penalizes control more than state
deviation, which matches our fuel consumption objective.
For the Euclidean ball constraint, the radius for position rq
and velocity rv was set to 1000 km and 1000 km/day which
will allow the spacecraft to deviate from the reference and
only burn when necessary. The constant a = 1×10−2 in (13),
and this value was tuned to ensure that the manifold constraint
was satisfied throughout the entire trajectory. The results of
the control inputs for revolutions 10-20 are shown in Fig. 3,
where the top plot represents the control with the Euclidean
ball constraint and the bottom plot shows the control with
the ellipsoid state constraint. For the 100 revolutions, the
Euclidean ball constraint consumed 2.89 m/s of fuel while
the ellipsoidal constraint used 2.713 m/s. A majority of the
fuel is consumed to correct the initial injection error as only
0.357 m/s was consumed for revolutions 2-100 using the
Euclidean ball constraint, while the ellipsoid constraint only
used 0.0908 m/s for revolutions 2-100.

2https://github.com/RoboticExplorationLab/cvx-mpc-stationkeeping
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(a) Euclidean ball state constraint control strategy

0 20 40 60 80 100 120 140
−1

0

1

·10−9

Days

A
cc

el
er

at
io

n
(m

/s
2 )

X Control

0 20 40 60 80 100 120 140

0

0.5

1

·10−8

Days

A
cc

el
er

at
io

n
(m

/s
2 )

Y Control

(b) Cost-to-go (ellipsoidal) state constraint control strategy

Figure 3: Comparison of two control strategies for revolu-
tions 10-20 of an L2 halo orbit in the Earth-Moon system.
The z control is zero for both strategies.

The total fuel consumption per year is shown in Table 2. As
expected, the cost-to-go ellipsoid constraint uses less fuel be-
cause the state space is constrained using the LQR cost met-
ric, which heavily penalizes the control effort. The manifold
constraint is satisfied throughout the entire 100 revolution
trajectory, and to verify that the satellite leaves through the
right unstable manifold if the thrusters were to malfunction,
we simulate CR3BP dynamics without control forward in
time at each state of the solution. As expected, the satellite
escapes through the right manifold throughout the mission,

5
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as the optimizer provided station-keeping maneuvers that
autonomously biased the trajectory in the unstable manifold
direction. However, due to the half-plane assumption in
the contingency constraint, there is some transient phase in
which the manifold constraint does not guarantee a safe exit
over long-horizon simulations. This is because the spacecraft
initially executes thrust maneuvers to reduce the effects of the
injection error, and then it reaches a steady-state phase where
it guarantees a safe exit trajectory locally when close to the
reference trajectory. The safe exit trajectory for revolutions
3-100 using the Euclidean ball constraint is shown in Fig. 7a.

We also analyzed the burn locations along the orbit for one
of the scenarios. Fig. 4 shows the location of the burns
for the control trajectory from the Euclidean ball constraint
solution. Interesting patterns emerge, such as the symmetry
of the x burns around the y-z plane and the simultaneous x and
y burns in the same instance. Both the ellipsoid and Euclidean
ball constraints serve as trust regions for the convex problem.
Adding the half-space contingency constraint reduces the size
of this trust region, ensuring the solution stays close to the
halo orbit. Since the dynamics are linearized around the
halo orbit, staying near the reference trajectory improves the
accuracy of the linear dynamics approximation. This leads to
a more accurate solution to the true non-convex problem.
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Figure 4: Burn locations for the L2 halo orbit in the Earth
Moon system using the Euclidean ball state constraint

Saturn-Enceladus Simulation

For the Saturn-Enceladus system, the initial injection error
was set to 238.5 m in the x position and 0.486 m/s in the y-
component of the velocity. Similarly, the goal is to track the
halo orbit from Fig. 1b with minimal fuel and ensure a safe
exit trajectory throughout most of the mission. The L2 halo
orbit was discretized to 41 knot points, resulting in a timestep
∆t = 24.308 minutes. The state weighting matrices Qk and
QN for the cost-to-go calculation were set to 1×10−6I(6), the
control weight matrix Rk was set to 1×10−3I(3), and c= 1 in
(11). These values are significantly smaller than those of the
Earth-Moon system; however, they were chosen to maintain
good numerical stability, and they still penalize the control
usage more than the state deviation. For the Euclidean ball

constraint, rq and rv were set to 100 km and 100 km/day.
The constant a was set to 5× 10−1 in (13). The results of
the control inputs for revolutions 10-20 are depicted in Figs.
5 and 6, and the fuel consumption for the Euclidean ball
constraint was 5.586 m/s while the ellipsoidal constraint used
5.235 m/s for 100 revolutions.
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Figure 5: Euclidean ball state constraint control strategy for
revolutions 10-20 of an L2 halo orbit in the Saturn-Enceladus
system.

The fuel consumption per year is listed in Table 2. Again,
the ellipsoidal constraint is superior by a smaller margin, and
both constraints provide impulsive burns, which is desired.
For the manifold escape trajectory in the Saturn Enceladus
system, we simulated the uncontrolled dynamics along all
states from the problem using the Euclidean ball constraint
solution and the satellite successfully exited through the
right unstable manifold for all states in revolutions 12-100
as shown in Fig. 7b. Since the dynamics in the Saturn-
Enceladus case are significantly faster than the Earth-Moon,
the transient phase lasts for a longer period, however, we
still obtain a safe exit trajectory for revolutions 12-100. We
obtain a 99.92% success rate in generating safe exit trajectory
throughout the entire 100 revolutions in the Earth-Moon
system and a 97.53% success rate in the Saturn-Enceladus
system. Due to the chaotic nature of the dynamics, a small
subset of trajectories in both systems eventually head toward
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Figure 6: Cost-to-go state (ellipsoidal) constraint control
strategy for revolutions 10-20 of an L2 halo orbit in the
Saturn-Enceladus system.

the planetary body when simulated with no propulsion over
a long time-horizon. This happens because the contingency
constraint only provides a local guarantee over short time
horizons.

Table 2: Fuel Consumption per Year

System State Constraint Fuel Consumption
[ m

s /yr]

Earth-Moon Euclidean Ball 0.712
Earth-Moon Ellipsoid 0.668
Saturn-Enceladus Euclidean Ball 30.16
Saturn-Enceladus Ellipsoid 28.755

5. CONCLUSIONS
In this paper, we studied the use of a receding-horizon con-
troller for long-term stationkeeping around an unstable halo
orbit that offers a secure contingency plan in the event of
thruster malfunctions. The exit strategy is devised by intro-
ducing a half-space constraint in the optimization problem
to bias the satellite trajectory in a desired direction in the

(a) Manifold exit trajectories for the Earth-Moon solution with the
Euclidean ball constraint for revolutions 4-100 (steady state phase).

(b) Manifold exit trajectories for the Saturn-Enceladus solution with
the Euclidean ball constraint for revolutions 12-100 (steady state
phase).

.

Figure 7: Manifold exit trajectories for the Earth-Moon and
Saturn-Enceladus systems.

unstable manifold. The controller produces impulsive thrusts
at the optimal locations around the orbit and minimizes fuel
consumption throughout the desired number of revolutions.

Our future work aims to enhance the robustness of our
approach. We plan to simulate the dynamics using a high-
fidelity N-body model with ephemeris data. In addition,
we plan to incorporate model uncertainties, such as state
estimation errors and maneuver execution errors, to develop a
robust model-predictive control framework. Another key fo-
cus will be exploring various formulations of the contingency
constraint, with the goal of achieving 100% safety throughout
a 100-revolution mission.
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