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Abstract. We present a new solver for non-convex trajectory optimization
problems that is specialized for robotics applications. CALIPSO, or the Conic
Augmented Lagrangian Interior-Point SOlver, combines several strategies for
constrained numerical optimization to natively handle second-order cones and
complementarity constraints. It reliably solves challenging motion-planning
problems that include contact-implicit formulations of impacts and Coulomb
friction, thrust limits subject to conic constraints, and state-triggered constraints
where general-purpose nonlinear programming solvers like SNOPT and Ipopt fail
to converge. Additionally, CALIPSO supports efficient differentiation of solutions
with respect to problem data, enabling bi-level optimization applications
like auto-tuning of feedback policies. Reliable convergence of the solver is
demonstrated on a range of problems from manipulation, locomotion, and
aerospace domains. An open-source implementation of this solver is available.
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1 Introduction

Trajectory optimization is a powerful tool for offline generation of complex behaviors
for dynamic systems, as well as online as a planner or feedback controller within model-
predictive-control frameworks. The use of constraints greatly enhances the ability of a
designer to generate desirable solutions, enforce safe behaviors, and model physical phe-
nomena. Unfortunately, many constraint types that have important and direct applica-
tions to robotics are poorly handled by existing general-purpose nonlinear programming
(NLP) solvers [31] or differential dynamic programming (DDP) algorithms [21].

Second-order cones [9], which commonly appear as friction-cone [30] or thrust-limit
[7] constraints, present difficulties for NLP solvers due to their nondifferentiability at
commonly occurring states, like when the friction or thrust forces are zero. Common
reformulations of these constraints for solvers like SNOPT [15] and Ipopt [47] are
typically non-convex and fail to work well in practice [45].

Contact dynamics, including impact and friction, are naturally modeled with com-
plementarity constraints [35]. This formulation constrains contact forces to only take on
non-zero values when the distance between objects is zero. State-triggered constraints
[38], in which constraints switch on or off in different regions of the state space, can
similarly be modeled with complementarity constraints. However, these constraints vio-
late the linear independence constraint qualification (LICQ), a fundamental assumption
in the convergence theory of standard NLP solvers [31, 6].
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Fig. 1: Contact-implicit trajectory optimization examples optimized with CALIPSO. (a)
Ball attached to a string is swung into a cup by optimizing end-effector positions and
forces. (b) Autonomous car plans a drifting manuever in order to parallel park. (c¢) Gait
for a quadruped is optimized via a single step and loop constraint. (d) Bicycle robot
performs a bunny hop over an obstacle to reach a goal state.

In this work, we present a new solver for trajectory optimization, CALIPSO: Conic
Augmented Lagrangian Interior-Point SOlver. The development of this solver is mo-
tivated by challenging non-convex motion-planning problems that require second-order
cone and complementarity constraints; in particular, contact-implicit trajectory opti-
mization [33, 28] for locomotion and manipulation. CALIPSO combines a number of
ideas and algorithms from constrained numerical optimization to solve these difficult
problems reliably.

Second-order cones are handled using an interior-point method [44] that exploits
the convexity of these nonlinear constraints for strict enforcement without the need
for linear approximations. All equality constraints are handled using an augmented
Lagrangian method [4], which does not require the constraints to satisfy LICQ and is
robust to the degeneracies that can arise from complementarity constraints [18]. Addi-
tionally, both the interior-point and augmented-Lagrangian methods are formulated in a
primal-dual fashion to enhance the numerical robustness and performance of the solver.
The computation of Newton steps on the combined primal-dual augmented-Lagrangian
and interior-point KKT conditions are reformulated as a symmetric linear system to
enable the use of fast, direct linear algebra methods [10]. Finally, the implicit-function
theorem [11, 2] is utilized to efficiently differentiate through solutions, enabling bi-level
optimization applications such as auto-tuning of model-predictive-control policies.

Our specific contributions are:

— A differentiable trajectory-optimization solver with native support for second-order
cones and reliable handling of complementarity constraints

— A novel, combined, interior-point and augmented-Lagrangian algorithm for non-convex
optimization

— A symmetric reformulation of the combined method’s KKT system for fast symmetric
linear-system solvers

— A collection of benchmark robot motion-planning problems that contain second-order
cone and complementarity constraints



CALIPSO 3

Table 1: Comparison of feature support for trajectory-optimization solvers.

solver method accuracy second-order complementarity differentiable

ALTRO [16] indirect medium v’
Trajax [43] indirect medium X

GuSTO [8]  direct high v’

FORCES [49] direct high X
X

v’

Drake [42]  direct high
CALIPSO  direct high

X X X X X
X x x %

— An open-source implementation of the solver written in Julia

In the remainder of this paper, we first provide an overview of related work on trajec-
tory optimization methods in Section 2. Then, we provide the necessary background on
complementarity constraints, LICQ, augmented-Lagrangian methods, and interior-point
methods in Section 3. Next, we present CALIPSO and its key algorithms and routines in
Section 4. We then demonstrate CALIPSO on a collection of robot motion-planning exam-
ples in Section 5. Finally, we conclude with a discussion and closing remarks in Section 6.

2 Related work

Trajectory-optimization problems are solved with methods that are classically catego-
rized as either indirect or direct [5]. Indirect methods include shooting methods, DDP
[21], and iterative LQR (iLQR) [27]. These methods exploit the temporal structure
of the problem and utilize a Riccati backward pass to compute updates for control
variables followed by forward simulation rollouts to update the states. Classically,
apart from the dynamics, these methods do not include support for constraints. In
recent years, various approaches have extended these methods to handle constraints
[41, 16, 17, 29, 36, 22, 20]. However, reliable constraint handling and solution accuracy
for these methods is still challenging in many scenarios.

Direct methods, in contrast, directly transcribe the trajectory-optimization problem
as a constrained nonlinear program, with both states and controls as decision variables
[37]. The transcription is provided to a general-purpose solver such as SNOPT or Ipopt.
This approach is generally reliable and enables robust constraint handling. However,
these NLP solvers do not exploit the temporal structure of the trajectory-optimization
problem like indirect methods, and historically have been thought to converge to
solutions more slowly as a result. To address this limitation, direct solvers tailored for
the underlying trajectory-optimization problem structure have been proposed [48] and
are available as commercial tools [49].

While providing reliable constraint handling for equality and inequality constraints
in many scenarios, direct methods lack support for second-order cones [9] and ex-
hibit difficulties handling complementarity constraints [35]. The exact handling of
second-order cones as inequality constraints with NLP solvers results in poor practical
performance because the nondifferentiable point of the cone is frequently visited in
robotics applications (e.g., an object resting on a surface with zero friction force). Classic
reformulations are non-convex and similarly exhibit poor and unreliable convergence
[45]. Recently, sequential convexification approaches have been developed that are
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able to handle second-order cones by iteratively solving convex approximations of the
original problem using general-purpose cone solvers [40, §].

The complementarity constraints that can arise in robotics problems are generally
difficult for NLP solvers to handle because they violate LICQ. To overcome this, a
number of problem reformulations and constraint relaxation techniques have been
proposed and explored for interior-point [6, 34] and augmented Lagrangian [19] methods,
but these approaches largely remain ad hoc and are unavailable in state-of-the-art
solvers for trajectory optimization, which we compare in Table 1.

3 Background

In this section, we first provide a brief overview of trajectory optimization, followed by
background on complementarity constraints, LICQ, augmented Lagrangian methods,
and interior-point methods for constrained optimization. Finally, we compare approaches
for differentiating through a solver.

3.1 Trajectory optimization

Direct methods for trajectory optimization transcribe problems into standard NLP
instances:

minimize c(x)
T
subject to g(x)=0, 1)
h(z)eK,
with decision variables x € R™, objective c:R"™ — R, equality constraints g:R" —R™,
and inequality constraints h:R"™ — RP? in cone K. The functions are assumed to be

smooth and twice differentiable, and the cone is the Cartesian product of convex cones
(e.g., standard positive-orthant inequalities and second-order cones) [9].

Trajectory optimization problems,

T-1
minimize Cr(X7)+ > Ci(X3,Uy)

1.7,U1.r-1

t=1
subject to Fy(X¢,Ur)=Xpp1, t=1,...T7—1, (2)
Et(Xt,Ut):O, t:17...7T,
Ht(XtaUt)EICtv til,..., ’

are instances with special temporal structure for a dynamical system with state X; € R™*,
control inputs U; € R, time index ¢, discrete-time dynamics Fy:R™ xR — R™+1
and stage-wise objective Cy: R™ x R™ — R, equality constraints F; :R™ xRt — RPt,
and cone constraints Hy;:R™ x R™ —R% over a planning horizon 7.

3.2 Complementarity constraints

Contact-implicit trajectory optimization [33] optimizes trajectories for systems that
make and break contact with their environments and represents dynamics using com-
plementarity constraints. For example, optimizing motion over a single time step for
an actuated particle in a single dimension modeled with impact such that it cannot
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pass through the floor:
miggrgze (z—zgoal)2+u2
subject to m((z—2)/h—v—gh)+y+u=0, (3)
z-y=0,
2,720,

with current and next positions z,z € R, current velocity v € R, control input ©€R,
contact impulse y€ R, mass me R, gravity g€ R, time step h€ R, and goal
Zgoal € R. These constraints are derived from a constrained discrete Lagrangian [28].
The set of constraints on z and  are collectively referred to as a complimentary
constraint, and are sometimes abbreviated z 1 . This formulation does not require
pre-specified contact-mode sequences or hybrid dynamics since the solver is able to
optimize physically correct contact dynamics at each time step.

3.3 Linear-independence constraint qualification

General-purpose NLP solvers that rely on Newton’s method to compute search directions
(e.g., SNOPT and Ipopt) assume that the constraints provided by the user satisfy
the LICQ in the neighborhood of solutions. Certain classes of constraints, including
complementarity conditions that naturally arise in contact dynamics, often do not
satisfy this assumption. We demonstrate how this assumption is violated with a simple
contact-implicit trajectory-optimization problem (3). The Lagrangian for the problem is:

L(zuyy,a,b,cd)=(z— Zgoa1)2 +u’+a (m((z —Zz)/h—7 —gh) +'y+u) +bzy—cz—dy,
(4)

where a,b,c,d € R are the Lagrange multipliers, or “dual variables,” associated with
constraints. The KKT system is:

2 b 0 m/h~y =1 0 7TJA:] [ 2(z—z)+am/h+by—c
b 0 0 1 =z 0 —-1|]|Ay a+bz—d
0o 0 2 1 0 0 O Au 2u+ta
m/h 1 1 0 0 0 0 ||Aa|=—|m((z—2)/h—v—gh)+y+u|, (5)
v z 0 0 0 0 O Ab zy
c 0 0 0 0 =z O Ac cz
L0 4 0 0 0 0 ~ |[Ad] L d-y i

with first-order necessary (KKT) conditions (right-hand side) and KKT matrix (left-
hand side). The Newton step that a standard NLP solver would take to drive these
KKT conditions to zero is computed by solving this system (5).

In the scenario where the particle is above the surface (i.e., z>0) the contact impulse
must be zero (i.e., y=0). As a result, the fifth and seventh rows of the KKT matrix
will be linearly dependent, resulting in non-unique optimal dual variables and violation
of LICQ. A similar result occurs when >0 and z=0. Consequently, the Newton step
is not well defined in these cases, causing difficulties for the solver. While a myriad
of ad hoc heuristics exist to alleviate this problem, we pursue a more rigorous approach
in the following sections based on ideas from constrained numerical optimization.
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3.4 Augmented Lagrangian methods

We now consider equality constrained problems of the form,
minimize c¢(x
imize (2 o
subject to g(z)=0.
The augmented Lagrangian method transforms this problem (6) into an unconstrained

problem by introducing dual variables, A€ R™, and a quadratic penalty parameterized
by pe R+Z

La(eshp)=c(@)+X"g(x)+ £ g(@) g(a), ™)

where we refer to L 4 as the augmented Lagrangian for the problem (6).

Primal method: The classic method alternates between minimizing the augmented
Lagrangian (7) and performing outer updates on the dual variables and penalty:

A= A+pg(x),  ped(p), (8)
until a solution to the original problem (6) is found [4]. This typically requires ten
or fewer outer updates and a simple update, ¢: R — R, that scales the penalty by
a constant value, works well in practice. Throughout, subscripts are used to denote
derivatives and we drop the variable dependence of the functions for clarity. The KKT
system for this method is:

m
[cm +pgl gﬁZ(A(’)wg(”)giZZ} Ap=-— [cﬁgf (A+pg)|- 9)

i=1
Search directions Az € R™ are computed by solving the linear system (9) for fixed
values of the dual variables and penalty. Newton’s method with a line search is utilized
to compute iterates that satisfy the KKT conditions, or residual (9), to a desired
tolerance. Importantly, the KKT matrix becomes increasingly ill-conditioned as the
penalty is increased in order to achieve better satisfaction of the equality constraints,

degrading the quality of the Newton step.

Primal-dual method: To address the deficiencies of the primal method, a primal-
dual method introduces additional dual variables, y € R™ and constraints:
y=XA+pg(x), (10)

in order to utilize an alternative KKT system with better numerical properties.

Combining these constraints (10) with the primal KKT system (9) and performing
a simple manipulation yields the primal-dual augmented-Lagrangian KKT system:

LU T

Y i) [Av g+ (A-y)
In contrast to the primal system (9), this system (11) does not become ill-conditioned as
the penalty is increased because this term does not appear in the KKT matrix—only its
inverse appears (i.e., ,%[ ), which actually enhances the conditioning of the system by
performing dual regularization [24, 14, 3]. Further, this method does not require LICQ
because the KKT matrix remains full rank even in cases where g, is rank deficient
as a result of the dual regularization [18].

Additionally, the KKT conditions now contain relaxed constraints (i.e., g(x)+ % (A—1y))
that are particularly helpful for complementarity formulations since they are only sat-
isfied in the convergence limit as outer updates are performed. In the contact-dynamics
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setting, this relaxation corresponds to “soft” contact models that are iteratively updated
to become “hard” as the algorithm converges.

3.5 Interior-point methods

To handle problems with cone constraints (i.e., inequalities and second-order cones)
that commonly occur in robotics applications, for example torque limits or friction
cones, we employ interior-point methods. To illustrate the approach, we now consider
problems with inequality constraints:

minimize c¢(x)
subject to h(z)>0.

An unconstrained problem is formed by introducing a logarithmic barrier, relaxed by
a central-path parameter k€ R :

Li(w;k) =c(x) *Hzlog(h(i) (), (13)

(12)

where we refer to L as the barrier Lagrangian for the problem (12).

Primal method: The classic method alternates between minimizing the barrier
Lagrangian (13) and outer updates to the central-path parameter until a solution to
the original problem (12) is found [9]. An effective strategy for the update is to decrease
the parameter by a constant factor.

The KKT system for this method is:

P p
[cm —mizzl( h%i) ) — (hé))z (h;i))2)} Ar=— [cx —ﬁ; ht) h;i)} ) (14)

As the central-path parameter is decreased, the logarithmic barrier becomes a closer
approximation to the indicator function, which has an infinite cost if a constraint is
violated and is otherwise zero [9]. While simple, this approach suffers from numerical
ill-conditioning, similar to the primal augmented Lagrangian method, as the central-path
parameter approaches zero, degrading a solver’s ability to find accurate solutions to
the original problem (12).

Primal-dual method: To address the conditioning issues of the primal method,
additional dual variables, z € R?, and constraints, () = /A (x) for i =1,...,p, are
introduced to form a new KKT system:

p X .
Coz— ;z(z)h% hT {Am} __ [cz —hgz} (15)

diag(:)h, diag(h)| 12 zoh—re
2,h>0. (16)

Similar to the primal-dual augmented Lagrangian method, this KKT matrix does
not depend on the central-path parameter, resulting in significantly better numerical
conditioning than primal methods. The complementarity constraints in the KKT
conditions are relaxed (i.e., z o h(z) — ke), only being satisfied in the limit as the
central-path parameter is decreased to zero. Here, the target e is a vector of ones and
the cone product o denotes an element-wise product.
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Fig. 2: Robotics applications with second-order cone constraints include Coulomb friction
at contact points in manipulation tasks (left) and thrust limits on rockets (right). Cone
constraints are shown in green, while force vectors are shown in red.

Second-order cone constraints: The barrier formulation accommodates second-
order cone constraints,

a€ Qi ={(aW,a®V)eRxR71||a®V |, <aV}, (17)
of dimension [, which frequently appear in robotics applications as friction cones and
thrust limits (Fig. 2). In this setting, the barrier contains squared cone variables,

1 . .
Slog((a)2=(@®")Ta®), (18)

and remains convex; the cone product and target are:
aob=(aTb,aMp*) 4pMW D) e=(1,0,_y). (19)

The inequality constraints (16) are replaced with their second-order cone counterparts
(17) [12, 44].

3.6 Differentiable optimization

Solvers can be differentiated by unrolling the algorithm and utilizing the chain rule
to differentiate through each iterate [13]. However, in practice, this approach requires
truncating the number of iterates, which can lead to low-accuracy solutions. Additionally,
the approach can be plagued by numerical issues that lead to exploding or vanishing
gradients. A more efficient approach is to utilize the implicit-function theorem at a
solution point in order to compute the sensitivities of the solution [2, 1] .
An implicit function, R:R*xR?—R?, is defined as
R(w*;0)=0, (20)
for solutions w* € R® and problem data § € R®. At an equilibrium point, w*(#), the
sensitivities of the solution with respect to the problem data, i.e., dw/d6, can be
computed under certain conditions [11] as:
-1

@:_(@> O (1)

00 ow 00
In the case that OR/0w is not full rank, an approximate solution, e.g., least-squares, can
be computed. A similar approach for differentiating through DDP-based solvers using a
Riccati approach has been proposed [23]. In the context of trajectory optimization, the
decision variables w contain trajectories of states and controls and the problem data
includes terms like control limits or parameters of the system like friction coefficients.

4 CALIPSO

CALIPSO is a differentiable primal-dual augmented Lagrangian interior-point solver
for non-convex optimization problems with second-order cone and complementarity
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constraints. Its standard problem formulation is:

minimize c¢(x;0)

xT
subject to g(z;0) =0, (22)
h(x;0) e,

with decision variables zz € R™, problem data # € R, equality constraints g: R™ x R% —
R, and constraints h:R™ xR?—RP in cone K=R% x Ql(ll) X ee X Ql(]j ) comprising
a g-dimensional inequality and j second-order cones, each of dimension /;. Internally,
problem (22) is reformulated and additional slack variables r € R™ and s € RP, as-

sociated with the equality and cone constraints, respectively, are introduced, and the
following modified problem is formed:

P .
minimize ¢(x;0)+ATr+LrTr—k> log(s®)

7,8 =1

subject to g(x;0)—r=0, (23)
h(x;0)—s=0,
sek,

The modified problem’s Lagrangian is:

L(w;f,\p,k) = c(z;0) +y* (g(2;0) =)+ 27 (h(z;0) —s)

P
+)\Tr+ngr—/<;Z;log(s(i)). (24)
i—
For convenience we denote the concatenation of all of the solver’s variables as
w=(x,r,s,y,2,t). The KKT system is:

Lyz+e,l 0 0 g AT 0 Ax cotgly+hlz
0 (p+e) 0 —I 0 0 Ar AFpr—y
0 0 eI 0 —-I -1 As| —z—t
Gz —I 0 —el O 0 Ayl qg—r ’
hy 0 —I 0 —el O Az h—s
0 0 P, 0 0 P—eql] | AL sot—ke
JAw=—R, (25)

where and P;, P, €SP are the cone-product Jacobians, and €,,eq € R are additional
primal and dual regularization terms, respectively.

4.1 Search direction

The nominal KKT system (25) without regularization (i.e., €,,e4=0) is non-symmetric,
potentially with undesirable eigenvalues that will not return a descent direction. The
solver modifies this system for faster computation and a more reliable search direction.

Symmetric KKT system. To be amenable to fast solvers for symmetric linear
systems, the nominal KKT system is reformulated:

T T
Lyy+epl gglc h, A 1:41
Y= _<P+6p I) 0 Ayl =—Ly|, (26)
L

e 0 —(al+(PtegR) R | 142
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using Schur complements [9], where L, =L, +-—2—L,, L,=L.+(Ps+¢,P,) Y (P,Ls+

L;), and P,=P;—¢4l. The remaining search c,;;;cpctions,
Ar=(Ay+L,)/(p+ep), (27)
As=(Pi+epP) " (PA2+P L+ Ly), (28)
At=—Az+e,As— Ly, (29)

are recovered from the solution (26). Iterative refinement [31] is performed to improve
the quality of the search directions computed using the symmetric system (26 - 29).

Inertia correction. To ensure a unique descent direction, the left-hand side of the
symmetric KKT system (26) is corrected to have an inertia of n positive, m+p, negative,
and no zero-valued eigenvalues. This is accomplished via adaptive regularization that
increases the regularization terms, and subsequently reduces the values when possible
to limit unnecessary corrections, using a heuristic developed for Ipopt [47].

4.2 Line search

Cone variables are initialized being strictly feasible at the start of each solve. A filter line
search that is a slight modification of the one used by Ipopt [47] is performed to ensure an
improvement to the solution is achieved at each step of the algorithm and step sizes are
initially chosen using a fraction-to-the-boundary rule to ensure that the cone constraints
remain strictly satisfied. Additionally, a separate step size is computed for the candidate
cone dual variables ¢ to avoid unnecessarily restricting progress of the remaining variables.

After satisfying the cone constraints, a filter line search is performed with the merit
function:

p
plars:0.,05) =c(w:0)+ A\ r+ ngrfmZbg(s“)), (30)
i=1
and violation metric:
n=|/(g(x)—rh(z)—s)ll1/(m+p). (31)
The step size is further decremented until either the merit or violation metric is decreased
[46].

4.3 Outer updates

Convergence of a subproblem (23) occurs for fixed values of A, p, and s, when the
criteria: || R|co <7Vxk, is met for 7, € R4 This criteria does not require strict satisfaction
of subproblems and decreases the total number of iterations required by the solver. Outer
updates on the central-path parameter and the penalty value are subsequently performed:

prma (g min (-6 ), pémin (pmaxmax(@, p,1/k)). (32)

The updates are clipped to prevent unnecessarily small/large values.

4.4 Solution derivatives

The solution w*(6) returned by CALIPSO is differentiable with respect to its problem
data 6. At a solution point, the residual is approximately zero (20), and sensitivities (21)
are computed using OR/Ow=J, which has already been computed and factorized, and:

6R/60 = (Lg;g ,Om ,Op,gg,hg ,Op). (33)
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Algorithm 1 CALIPSO

procedure CALIPSO(z,0,c,9,h,K,Y)

parameters: k=1,p=1A=0

initialize: r,s,y,z,t

until ||R(w;0,y,00,0)||cc <Vr

until ||R(w;0,\,0,K)||cc <Vxk do

inertia correction: ¢,, €4 > Eq. (25)
search direction: Aw=(Az,Ar,As,Ay,Az,At) > Egs. (26 - 29)
cone line search: o, oy
candidate: z=z+aAzx, T=r+adr, s=s+als

filter: ¢, 7
update: w+ (Z,7,8,y+ady,z+alzt+out)
outer update: \,p,x > Eq. (32, 8)
differentiate: dw/06 > Eq. 21

return w,0w/00
end procedure

Additionally, the sensitivity of the solution with respect to each element of the problem
data can be computed in parallel.

4.5 Implementation

The CALIPSO solver is summarized in Algorithm 1. An open-source implementation
of the solver, CALIPSO.jl1, written in Julia, is provided. The solver, and the following
examples, are available at: https://github.com/thowell/CALIPSO.jl.

5 Examples

We highlight the capabilities of CALIPSO by optimizing a collection of motion-planning
problems from manipulation, locomotion, and aerospace domains that require second-
order cone and complementarity constraints while exactly transcribing constraints
without reformulation. Next, we demonstrate the ability to differentiate through the
solver and auto-tune policies for nonlinear underactuated robotic systems. Additional
details about the experimental setups are available in the open-source implementation.

5.1 Contact-implicit trajectory optimization

CALIPSO is utilized to optimize contact-implicit trajectory-optimization problems.
The contact dynamics [33] are directly transcribed without modification. Comparisons
are performed with Ipopt using the default MUMPS linear-system solver, and results
are summarized in Table 2.

Ball-in-cup. The position and applied forces of a robotic manipulator’s end-effector
are optimized to swing a ball into a cup (Fig. 1a). A string between the end-effector
and ball is modeled with inequality and complementarity constraints. CALIPSO finds
a physically realistic motion plan that is verified with inverse kinematics in simulation,
while the Ipopt solution is of poor quality and violates physics by applying nonnegligible
force to the ball while the string is slack.
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Table 2: Comparison between CALIPSO and Ipopt for final objective value, constraint
violation, and total iterations on contact-implicit trajectory-optimization problems. Cases
that failed to converge (i.e., Ipopt falling back to restoration mode) are highlighted in
red. Without user-tuned smoothing and problem reformulations, Ipopt performs poorly
on these examples and returns solutions that are unusable for robotics applications. In
contrast, CALIPSO returns high-quality solutions and we verify their performance in
simulation with inverse-kinematics planning for the ball-in-cup and model-predictive
control for the quadruped gait examples.

solver objective violation iterations solver objective violation iterations

Ipopt 68.18  2.60e-2 205 Ipopt 8.66  1.00e-1 194
CALIPSO 11.96 4.86e-5 131  CALIPSO 0.24 1.38¢-5 189

(a) ball-in-cup (b) drifting

solver objective violation iterations solver objective violation iterations

Ipopt 1855.18  1.13e-1 2000 Ipopt 1503.42 8.96e-8 1409
CALIPSO 574.84 5.32e-4 178 CALIPSO 462.61 1.76e-6 101

(c) quadruped gait (d) bunny-hop

Drifting. A parallel-park maneuver is planned that requires an autonomous vehicle to
drift (i.e., plan a trajectory with both sticking and sliding contact) into a goal configura-
tion between two parked vehicles (Fig. 1b). The system is modeled as a Dubins car [25]
with Coulomb friction applied to the wheels. Ipopt exhibits extremely poor converge and
violates the friction cones to solve this problem, whereas CALIPSO finds a high-quality
solution that leverages the nonlinear friction cone to slide into the narrow parking spot.

Quadruped gait. A gait is planned for a planar quadruped by optimizing a single
step with a loop constraint (Fig. 1c). Ipopt struggles to converge, returning a solution
with large complementarity violations and a reference that is unusable for online
tracking. In contrast, CALIPSO finds a reference trajectory that we are able to track
in a hard-contact simulation using a model-predictive-control policy that is reliable
in the presence of model mismatch and disturbances [26].

Bunny-hop. A bicycle robot performs a bunny-hop over an obstacle (Fig. 1d). The
rider is modeled as a mass with actuated prismatic joints attached to the bike at each
wheel. CALIPSO is able to converge to a trajectory where the bicycle hops over the
obstacle by manipulating the rider mass, while Ipopt takes an order of magnitude more
iterations to converge.

In summary, Ipopt struggles to return solutions that are useful for robotics appli-
cations, whereas CALIPSO reliably returns high-quality solutions while using exact
constraint specifications.

5.2 State-triggered constraints

A trigger condition I" : R™ — R encodes the logic: I'(x) >0 = h(z) >0, that a
constraint is enforced only when the trigger is satisfied. Such state-triggered constraints
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Fig. 3: Entry-vehicle soft-landing plan that must avoid elevated regions to the left and
right of the landing zone, represented as state-triggered constraints. The unconstrained
and constrained solutions are shown in magenta and black respectively.

are utilized within various aerospace applications [38, 39, 40] and commonly utilize
a non-smooth formulation (left):

I —I =I'(z)
min(0,—I'(x))-h(z)<0 — h;_: Z: ilg(m) (34)

I, I'_hyh_ >0,
that linearizes poorly and can violate LICQ. In this work, we employ an equivalent
complementarity formulation (right) to land an entry-vehicle in an environment with
keep-out zones adjacent to the landing site. The resulting solution (Fig. 3) demonstrates
CALIPSO’s ability to find solutions that satisfy complementarity constraints. Ipopt
returns a solution that violates the keep-out zone for the majority of the trajectory.

5.3 Model-predictive-control auto-tuning

CALIPSO is utilized offline to plan reference trajectories and online as the tracking
controller in a model-predictive-control (MPC) policy. The policy aims to track the
reference, given an updated state estimate from a simulation, by re-planning over a
reduced horizon to compute a new (feedback) control that is then applied to the system.

The policy’s cost weights are treated as problem data to be optimized and the
solution computed by the policy (i.e., the re-optimized control inputs) are differentiated
with respect to these parameters (21) in order to compute gradients that are utilized
to automatically tune the policy. The metric for tuning the policy consists of quadratic
costs on tracking the reference. Gradient descent with a line search is used to update
the cost weights by differentiating through rollouts of the policy.

The policy weights are initialized with all ones and we compare the performance
of the auto-tuned policy after 10 gradient steps with open-loop and untuned policies
on swing-up tasks for cart-pole and acrobot systems. For both systems, the auto-tuned
policy outperforms the baselines; results are summarized in Table 3.

6 Discussion

In this work, we have presented a new solver for trajectory optimization problems
with second-order cone and complementarity constraints: CALIPSO. The solver pri-
oritizes reliability and numerical robustness, and offers specialized constraint support



Table 3: Comparison of tracking error between open-loop and both untuned and
auto-tuned model-predictive-control policies in simulation. By differentiating through
CALIPSO, gradient-based optimizing is able to rapidly improve controller performance
without requiring designer input.

open-loop MPC (untuned) MPC (tuned)

cart-pole  5.11e4 15.06 0.79
acrobot  1.38e4 439.26 0.04

that enables planning for challenging tasks arising in manipulation, locomotion, and
aerospace applications while enabling the designer to exactly transcribe constraints
without requiring problem reformulations. Additionally, the solver is differentiable
with respect to its problem data, allowing it to be called by efficient, gradient-based,
upper-level optimization routines for applications like policy auto-tuning. To the best
of our knowledge, no existing solver offers this collection of unique features.

Future work will explore support for additional cones, which naturally fit within
CALIPSO’s interior-point framework, including semidefinite cones that are of inter-
est in many control applications [32]—particularly settings with nonlinear dynamics.
Additionally, extending the Julia implementation to C or C++ will potentially enable
real-time performance of MPC policies onboard robots with limited computing hardware.
The solver has potential to support state-triggered constraints online in safety-critical
applications or be utilized in feedback loops for contact-implicit model-predictive control
[26] with systems that make and break contact with their environments.
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