
Aquarium: A Fully Differentiable Fluid-Structure Interaction Solver for
Robotics Applications

Jeong Hun Lee1, Mike Y. Michelis2, Robert Katzschmann2, and Zachary Manchester1

Abstract— We present Aquarium, a differentiable fluid-
structure interaction solver for robotics that offers stable
simulation, accurately coupled fluid-robot physics in two dimen-
sions, and full differentiability with respect to fluid and robot
states and parameters. Aquarium achieves stable simulation
with accurate flow physics by directly integrating over the
incompressible Navier-Stokes equations using a fully implicit
Crank-Nicolson scheme with a second-order finite-volume spa-
tial discretization. The fluid and robot physics are coupled
using the immersed-boundary method by formulating the no-
slip condition as an equality constraint applied directly to the
Navier-Stokes system. This choice of coupling allows the fluid-
structure interaction to be posed and solved as a nonlinear
optimization problem. This optimization-based formulation is
then exploited using the implicit-function theorem to compute
derivatives. Derivatives can then be passed to downstream
gradient-based optimization or learning algorithms. We demon-
strate Aquarium’s ability to accurately simulate coupled fluid-
robot physics with numerous 2D examples, including a cylinder
in free stream and a soft robotic fish tail with hardware
validation. We also demonstrate Aquarium’s ability to provide
analytical gradients by performing gradient-based shape-and-
gait optimization of an oscillating diamond foil to maximize its
generated thrust.

I. INTRODUCTION

In recent years, there has been considerable interest in
bio-inspired locomotion for underwater [1]–[6] and aerial
vehicles [7]–[10] involving complex interactions with the
fluid environment. For example, the energy efficiency and
high maneuverability of fish-like propulsion are attributed to
the sensing and shedding of vortices [11], [12]. This complex
fluid interaction is also present in the flight of flapping-
wing aerial vehicles [13] and high-angle-of-attack perching
maneuvers of fixed-wing airplanes [14], [15], and has led
to the development of various robotic hardware systems,
including oscillating-foil propulsion for marine vehicles [16],
various biomimetic underwater systems [4], [17]–[19], and
flapping-wing, micro-aerial vehicles [20]–[22].

In contrast, there has been comparatively little work
jointly optimizing both the systems’ design and control
parameters [23], [24] while reasoning about the fluid en-
vironment [25], [26]. Such an optimization could provide
insight into the well-known passive swimming dynamics of
a dead trout [27] and lead to robotic systems with similar
capabilities. We believe that a major reason for the lack

*This material is based upon work supported by the National Science
Foundation Graduate Research Fellowship under Grant No. DGE2140739.

1 The Robotics Institute, Carnegie Mellon University, Pittsburgh, USA
jeonghunlee@cmu.edu, zacm@cmu.edu

2 Soft Robotics Lab, ETH Zurich, Zurich, Switzerland
michelism@ethz.ch, rkk@ethz.ch

(a) Progression of foil shape-gait profiles throughout the optimiza-
tion process. Shape colors are in reference to those in Figure 1b.

0.1 0.2 0.3 0.4
−20

0

20

−10

10

30

Time (s)

T
hr

us
t

(N
/m

)

Initial Iteration 1
Iteration 5 Converged (Iteration 14)

(b) Time history of generated thrust by foil shape-gait profiles
throughout the optimization process.

Fig. 1: Shape-and-gait co-optimization of an oscillating
diamond foil using the limited-memory BFGS (L-BFGS)
algorithm with analytical gradients provided by Aquarium.
The foil thickness, heave, pitch, and pitch-heave phase
are optimized to maximize the generated thrust. A fully
converged solution (black) is found after only 14 L-BFGS
iterations from a drag-inducing initial guess (green).

of work in this direction is the absence of an open-source,
accurate, stable simulator with full differentiability.

In recent years, various differentiable simulators [28]–
[37] have been deployed for a wide range of uses in
robotics. These solvers are able to provide gradients that
can be passed directly to optimization-based frameworks
such as reinforcement learning and model-predictive control.

Differentiable simulators can also be integrated into neural
networks during backpropogation to achieve high sample
efficiency and accuracy [24], [38], [39].

In the fluids community, various computational fluid dy-
namics (CFD) simulators also exist [26], [40]–[50]. However,
these solvers each possess at least one key deficiency that
limits their usability for robotics. These deficiencies include
poor accuracy, generalizability, and computational efficiency;
instability over larger time steps due to explicit integration;
lack of full differentiability for robotics tasks (e.g., control)
in unsteady flow; and inability to handle fluid-structure
interaction (FSI) to properly simulate the unsteady, multi-
physics coupling between the fluid and robot dynamics.

We propose Aquarium, an open-source, physics-based,
fully differentiable solver for simulating the two-dimensional
(2D) coupled dynamics between robotic systems and their
surrounding fluid environment. The single-phase fluid dy-
namics are solved by integrating over the governing Navier-
Stokes equations directly with a fully implicit Crank-
Nicolson scheme to preserve stability over large time steps.
The fluid discretization is handled using a second-order
finite-volume method, while the fluid-robot coupling is
achieved using the immersed boundary method [51], which
separates the fluid and robot meshes to avoid computationally
expensive re-meshing. Specifically, we build upon the work
of Taira et. al. [52] and Perot [53] to pose the FSI dynamics
as an optimization problem, with the fluid-robot coupling
acting as equality constraints to satisfy the no-slip boundary
condition. Analytical gradients are computed by applying
the implicit function theorem directly to the FSI problem.
Aquarium is currently implemented in 2D for rigid bodies,
but the methodology is generalizable to 3D flow and soft
bodies. In summary, Aquarium offers:

• Simulations that solve the discretized 2D Navier-Stokes
equations directly with multi-physics coupling between
rigid bodies and a fluid environment.

• Fully implicit time integration using Crank-Nicholson
to achieve stable simulation at reasonable sample rates
for control and optimization.

• Full differentiability to calculate analytical gradients
with respect to fluid and robot states and parameters
for use in gradient-based optimization and learning
frameworks.

The remainder of the paper is organized as follows: In
Section II, we provide some background on existing CFD and
FSI solvers, including their uses and limitations. Section III
then describes the proposed Aquarium solver. In Section IV,
we provide simulation results and hardware validation on
a variety of examples, including a cylinder in free stream
and a flapping, soft robotic fish tail in initially still water.
We then showcase the differentiability of Aquarium by per-
forming gradient-based shape-and-gait co-optimization of an
oscillating diamond foil to maximize its generated thrust. In
Section V we provide final concluding remarks and discuss
future work to address current limitations.

II. RELATED WORKS
A. Differentiable Fluid Dynamics

Industry-standard CFD solvers such as OpenFOAM [43],
SU2 [44], ANSYS FLUENT [45], and STAR-CCM+ [46]
provide accurate results for complex flows (e.g., multi-phase,
heat transfer, etc.) but at high computational costs with
only OpenFOAM and SU2 being open-source. Consequently,
running parameter sweeps for gradient-free optimization can
quickly become prohibitively expensive for high-dimensional
problems. In addition, gradient-free approaches tend to be
less stable and slow to convergence when compared to their
gradient-based counterparts [23], [36].

The class of differentiable simulators addresses this short-
coming. Though many differentiable solvers were developed
for robotics [28]–[37], there are also several works aimed
towards the fluids community. PhiFlow [47] was developed
as a differentiable PDE solver for deep-learning, written in
frameworks that allow for automatic differentiation, such as
JAX [54], PyTorch [55], and TensorFlow [56]. However, this
method is mainly directed at controlling fluids directly by
solving the governing Navier-Stokes equations and does not
support FSI. Similarly, JAX-FLUIDS [48] developed a level-
set method for differentiable, compressible, two-phase fluid
simulations in JAX. The work implements various boundary
conditions, including immersed boundaries for rigid bodies,
but only supports explicit integration and, similar to PhiFlow,
focuses on deep learning of fluid dynamics and does not
currently support FSI.

B. Design Optimization using Adjoint Methods

While not usually called “differentiable simulators,” sev-
eral conventional CFD frameworks [43]–[46] implement
adjoint methods [57], [58] to efficiently provide gradients
for large-scale shape optimization problems in steady-state
flow conditions. SU2 additionally offers shape optimization
capabilities in unsteady environments. Rather than solving
for the fluid-model derivatives explicitly, these frameworks
calculate Jacobian-vector products to efficiently calculate
gradients of the optimization problem. This is equivalent to
reverse-mode automatic differentiation that is widely used
in machine learning [54]–[56]. However, the extension of
adjoint methods to other applications that are critical for
robotics (e.g., control in unsteady flow) are relatively unex-
plored and not available as open-source platforms [59]–[61].

C. Fluid-Structure Interaction for Optimization

As previously mentioned, conventional CFD simula-
tors [43]–[46] are currently limited to gradient-based shape
optimization via adjoint methods. Using FSI for gradient-
based, non-shape (e.g., gait) optimization in unsteady flow
is still challenging, with previous work simplifying the fluid
model to potential flow [6] or Stokes flow [49], [62], [63]
for low-Reynolds-number regimes. Recently, Nava et al.
proposed a physics-informed, neural-network model of FSI
for the optimization of soft robotic swimmers [26]. However,
no guarantees can be given when generalizing to new shapes
and flow conditions.

Finally, Liu et al. [50] have implemented an FSI extension
based in the OpenAI Gym environment. While not differen-
tiable, their fluid solver implementation, a GPU-optimized
lattice-Boltzmann method, is highly efficient and can be
integrated with reinforcement-learning pipelines. The FSI is
achieved with an immersed-boundary method and various
swimming bodies are modeled as articulated rigid bodies.
The advantages of coupling robot dynamics with full fluid
solvers, as opposed to approximated fluid models [14], [64],
[65] are shown in several applications, such as leveraging
Kármán vortices for faster propulsion in swimming [1], [25]
and greater lift in flight of flapping-wing microrobots [40].

III. DIFFERENTIABLE FLUID-STRUCTURE
INTERACTION

Computationally modeling fluid dynamics and fluid-
structure interaction using the Navier-Stokes equations has
been extensively studied [51]–[53], [66]–[68]. Rather than
describing the methods in detail, we highlight the key con-
cepts and refer the reader to existing literature on CFD and
FSI for more details. Specifically, our work is most closely
related to that of Taira et. al [52] and Perot [53].

A. Implicit Fluid Model

We begin with the non-dimensionalized, incompressible
Navier-Stokes equations, which express conservation of mo-
mentum and mass for Newtonian fluids:

du
dt

+(u ·∇)u =−∇p+
1

Re
∇

2u+aext , (1)

∇ ·u = 0, (2)

where u, p, aext , and Re are the fluid velocities, pressure, ac-
celeration due to external forces (i.e., gravity, etc.), and non-
dimensional Reynolds number, respectively. The Reynolds
number is further defined as

Re =
ρure f lre f

µ
, (3)

where ρ is the fluid density, µ is the dynamic viscosity of the
fluid, ure f is a reference velocity (e.g., free-stream velocity),
and lre f is a reference length (e.g., width of the robot).

Using a second-order finite-volume method, we express
the continuous, partial derivatives of (1) and (2) as discrete
operations over a spatial fluid grid:

(u ·∇)u ⇒ N(u),

∇p ⇒ Gp,

∇
2u ⇒ Lu+bcL,

∇ ·u ⇒ Du+bcD,

where N(u) ∈ Rnu is the nonlinear convective term, G ∈
Rnu×np is the gradient operator, L ∈ Rnu×nu is the Laplacian
operator, D ∈Rnp×nu is the divergence operator, bcL ∈Rnu is
the boundary condition term corresponding to the Laplacian,
and bcD ∈Rnp is the boundary condition term corresponding
to the divergence. Then, using implicit Crank-Nicolson inte-
gration over a time step, we have the discrete, incompressible

Fig. 2: The immersed-boundary method, where the fluid
domain is represented by a fixed Eulerian grid (black), and
the boundary of the rigid body (i.e., robot) is represented by a
moving Lagrangian mesh (blue). The meshes are coupled by
a convolution matrix E that maps fluid-cell velocities (red)
to those of the boundary nodes (orange).

Navier-Stokes equations,

R(uk+1,uk, pk+1) = Auk+1 +
1
2

N(uk+1)−

r(uk)+Gpk+1 = 0,

(4)

c1(uk+1) = Duk+1 +bcD = 0, (5)

where uk+1 = [ux,uy]
T
k+1 ∈Rnu , pk+1 ∈Rnp , and A and r are

defined as follows:

A =
1
∆t

I − 1
2Re

L, (6)

r(uk) =
[1

∆t
I +

1
2Re

L
]
uk −

1
2

N(uk)+
1

Re
bcL +aext . (7)

Interestingly, it has been noted that −GT = D [52]. There-
fore, pk+1 can be interpreted as a Lagrange multiplier en-
forcing the conservation-of-mass constraint imposed by (5).

B. Fluid-Structure Interaction Model

To model the FSI, we extend the idea of treating the
Navier-Stokes equations as an optimization problem. First,
the FSI is modeled as an additional constraint in the form of
no-slip boundary conditions, where the velocity of the fluid
must equal the velocity of the robot at the boundary. To do so,
we use the immersed-boundary method [51], which separates
the fluid (u) and robot (xb) meshes into a fixed Eulerian grid
and a floating Lagrangian-boundary mesh, respectively, as
illustrated in Figure 2. The coupling between the meshes is
formulated as a convolution matrix, E ∈Rnb×nu that maps the
fluid cell velocities to the boundary node locations, allowing
us to formulate the no-slip constraint,

E(θ)uk+1 = ub
k+1, (8)

where ub
k+1 ∈ Rnb contains the velocities of the boundary

nodes and θ ∈ Rnθ represents parameters of the robot, such
as shape parameters and the state, xk+1. We then apply (8)

to our Navier-Stokes formulation as an additional constraint,
providing us with the full FSI problem:

R

(
uk+1,uk, pk+1,

f̃ b
k+1,θ

)
=

Auk+1 +
1
2

N(uk+1)− r(uk)

+Gpk+1 +E(θ)T f̃ b
k+1 = 0,

(9)

c1(uk+1) =GT uk+1 −bcD = 0, (10)

c2(uk+1,θ) =E(θ)uk+1 −ub
k+1 = 0. (11)

We solve (9)–(11) using a Gauss-Newton method, in
which the equations are locally linearized to compute an
update step,A+ 1

2
∂N

∂uk+1
G ET

GT 0 0
E 0 0

∆uk+1
∆pk+1
∆ f̃ b

k+1

=

−R
−c1
−c2

 (12)

where f̃ b
k+1 ∈Rnb acts as the dual variable for (8). Equation

(12) has the structure of a Karush-Kuhn-Tucker (KKT)
system, which are common in constrained optimization [69].
Upon inspection, f̃ b

k+1 effectively acts as a non-dimensional
acceleration that fluid particles experience at the boundary.
Therefore, forces acting on each boundary node (i.e., pres-
sure) can be calculated directly as

f b
k+1 =−ρ

hxhy

s
f̃ b
k+1, (13)

where f b
k+1 ∈ Rnb are the pressure forces acting along the

boundary, ρ is the fluid density, hx and hy are the spatial step
sizes of the fluid grid discretization, and s is the step size
of the boundary discretization. f b

k+1 can then be integrated
along the surface of the robot body to obtain net forces.

C. Simulation Gradients

We exploit the structure of the KKT system defined by
(12) to calculate analytical Jacobians of our FSI model [70].
For clarity, we first start by looking at our system at time tk
and group (9)–(11) to simplify the model:

z = (uk+1,uk, pk+1, f̃ b
k+1) (14)

g(z;θ) =

R(uk+1,uk, pk+1, f̃ b
k+1,θ)

c1(uk+1)
c2(uk+1,θ)

= 0. (15)

By definition, g(z∗;θ) = 0 is an implicit function, where z∗

represents the converged solution at each time-step. Using
the implicit function theorem [71], we then compute the
derivative ∂ z

∂θ
:

∂g
∂ z

δ z+
∂g
∂θ

δθ = 0 =⇒ ∂ z
∂θ

=−
(

∂g
∂ z

)−1
∂g
∂θ

. (16)

Expanding (16), we arrive at

−

A+ 1
2

∂N
∂uk+1

G ET

GT 0 0
E 0 0

︸ ︷︷ ︸

D′
g

∂uk+1

∂θ
∂ pk+1

∂θ

∂ f̃ b
k+1

∂θ

=

− ∂ r
∂uk
0
0

 ∂uk
∂θ

+ ∂g
∂θ
, (17)

where D′
g is the same KKT system that appears in (12) and

∂uk
∂θ

has already been computed at the previous time step tk−1.

Therefore, we can re-use the matrix factorization computed
during the simulation step to calculate derivatives for very
little additional computational cost. These Jacobians can
then be passed to gradient-based solvers to optimize shapes,
gaits, controls, or trajectories. This method also generalizes
to gradient computations with respect to fluid states and
parameters (e.g., fluid density).

IV. EXPERIMENTAL RESULTS
This section presents the results of several simula-

tion experiments to evaluate the FSI physics of Aquar-
ium with comparisons to both other numerical works and
hardware experiments. This includes the classic cylinder-
in-free-stream benchmark and a real-to-sim demonstra-
tion of a real-world soft robotic fish tail. We also
demonstrate the full differentiability of Aquarium with a
gradient-based optimization example that involves maxi-
mizing the thrust of an oscillating diamond foil. These
examples, along with the open-source implementation of
Aquarium are available at: https://github.com/
RoboticExplorationLab/Aquarium.jl

A. Cylinder in Free Stream

We simulate the classic benchmark example of a cylinder
in free-stream conditions as shown in Figure 3. To do so,
we define the simulation environment to have inflow and
outflow boundary conditions on the left and right boundaries,
respectively. The inflow boundary condition is defined to
be the free-stream velocity, u∞, while the outflow boundary
condition allows vortices to exit freely. We define the top
and bottom fluid boundaries to have far-field conditions (i.e.,
the same velocity as inflow) to also simulate free-stream
conditions when sufficiently distanced from the cylinder.

To study Aquarium’s generalizability to varying Reynolds
numbers, we evaluate the resulting steady-state behaviors
under various free-stream velocities. As seen in Figure 4,
Aquarium is able to capture both the steady-state vortex pairs
at lower Reynolds numbers (Re= 40) and the Kármán vortex
street at higher Reynolds numbers (Re = 100).

Fig. 3: Cylinder-in-free-stream simulation setup with inflow
and outflow boundary conditions defined for left and right
boundaries, respectively. Far-field boundary conditions are
defined for the top and bottom boundaries.

https://github.com/RoboticExplorationLab/Aquarium.jl
https://github.com/RoboticExplorationLab/Aquarium.jl

(a) Re = 40 (b) Re = 100

Fig. 4: Vorticity contours of flow around a cylinder in steady-state, free-stream conditions at varying Reynolds numbers. Being
Navier-Stokes based, Aquarium is able to properly simulate the vortex-shedding that occurs at higher Reynolds numbers.

(a) Aquarium simulation with corresponding hardware experiment.
The tracked markers on hardware, modeled as joints of the multi-
link, simulated representation, are boxed in red with corresponding
center-line links and joints in simulation shown in black.

0.5 1 1.5 2 2.5

−1

0

1

Time (s)
T

hr
us

t

Aquarium
Empirical

(b) Time history of normalized thrust force generated by soft robotic
tail from both simulation (black) and empirical (red) results.

Fig. 5: Unsteady fluid-structure interaction of a fixed-base soft robotic fish tail with matching hardware demonstration. The
robotic fish tail starts at rest in initially still water before being actuated at 3Hz. Aquarium is able to properly simulate the
transient flow and resulting forcing effects that are also observed empirically, especially the phase and frequency.

To study the flow-induced forces on the cylinder, we also
evaluate the resulting steady-state drag and lift coefficients.
As seen in Tables I and II, there is good agreement between
Aquarium and previous numerical and empirical studies. This
is also true for the non-dimensional Strouhal number, which
characterizes periodic vortex shedding in the wake and is
critical for studying bio-inspired swimming [12].

B. Soft Robotic Fish Tail

To demonstrate Aquarium’s ability to generalize beyond
simple geometry in steady-state flow, we also simulate the
periodic flapping of a soft robotic fish tail in initially still
water, and validate it against a hardware experiment as
shown in Figure 5a. The soft robotic fish tail is fabricated
as described in [23], [72], and has a left and right chamber
that are pneumatically actuated with 500 mbar at 3 Hz. The
hardware experiment involves fixing the tail to a force sensor,
which collects a time history of the net thrust force while
the tail is actuated. We use previously collected video and
force measurement data from [23].

In simulation, we approximate the soft robotic fish tail
as a ten-link, serial-chain, rigid-body model with the joints
located at corresponding marker positions along the center
line of the robot, as shown in Figure 5a. The body profiles of
each link are approximated by a linear interpolation between
the respective joint widths, and the fin is represented as a 1D

TABLE I: Steady-state results at Re = 40

Drag Coeff.

Tritton [73] (empirical) 1.65
Taira et. al [52] 1.55
Ren et. al [74] 1.57
Aquarium 1.75

TABLE II: Steady-state results at Re = 100

Drag Coeff. Lift Coeff. Strouhal #

Braza et. al [75] 1.325±0.008 ±0.280 0.164
Ren et. al [74] 1.335±0.011 ±0.356 0.164
Aquarium 1.481±0.010 ±0.362 0.174

link. The simulated motion is prescribed using a forward-
kinematics model, where the joint angles are determined
using CSRT [76] marker tracking from a pre-recorded video
of the hardware experiment. The fluid environment is also
modeled to recreate the hardware experiment: a 0.6m×0.6m
cavity with wall-like boundary conditions (u∞ = 0) filled
with initially still water. Simulated boundary pressure forces,
f b, are integrated over the boundary and compared to the
empirical force-sensor measurements. To best match our 2D
simulation to the 3D hardware experiment, we normalize
both datasets’ maximum thrust values to one.

Fig. 6: Oscillating diamond-foil optimization setup with
decision variables (1 shape and 3 gait parameters) shown
in red. α is the angle varying the foil thickness, A is the
heave amplitude, and B is the pitch amplitude. The relative
pitch-heave phase, φ (not shown) is also a decision variable.

As seen in Figure 5b, there is good agreement between
the phase and frequency of the normalized thrust forces
with respect to time, demonstrating the simulation’s ability
to capture transient-flow effects on a moving boundary.
Potential sources of error include Aquarium’s inability to
capture the full 3D effects (i.e., flow over the 3D contour of
the fish tail) present in the experiment. This is a limitation
of a 2D simulation, and future work is planned to extend
Aquarium to 3D. Other potential sources of error include
hardware fabrication error as well as the geometric and
kinematic approximations of the multi-link representation.

C. Optimization using Aquarium Gradients

To showcase the full differentiability of Aquarium, we
perform a shape-and-gait co-optimization of an oscillating
diamond foil in free-stream conditions using the gradient-
based, limited-memory BFGS (L-BFGS) algorithm [69] as
shown in Figure 1. Specifically, we aim to maximize the
thrust (i.e., minimize drag) generated by the foil and for-
mulate the objective as the integral of the thrust force over
an oscillation period. The optimization is performed over
a range of chord-wise Re ∈ [620,828]. This demonstrates
Aquarium’s ability to be used in optimization in unsteady
flow environments. We represent the diamond foil’s shape
with constant edge lengths (0.08m,0.2m) and an angle
parameter α that determines the foil thickness as seen in
Figure 6. Also seen in Figure 6, the gait is determined by
the heave amplitude A, pitch angle amplitude B, and relative
pitch-heave phase φ . To avoid degenerate cases, we impose
box constraints on the decision variables with 6◦ ≤ α ≤ 23◦,
0.05m ≤ A ≤ 0.15m, 0◦ ≤ B ≤ 60◦, and 0◦ ≤ φ ≤ 180◦.

Using gradients provided by Aquarium, L-BFGS achieves
a 139% improvement in thrust after converging to a thrust-
generating solution from a drag-inducing initial geometry
and gait as seen in Figure 1b. Specifically, the foil thickness
is minimized (α = 6◦) and the heave amplitude is maximized
(A = 0.15m) with a converged pitch and phase of B ≈ 27◦

and φ ≈ 74◦ as seen in Figure 1a. Despite the differences in
Re regime and overall foil shape, there is still good agreement
between this optimized gait profile to the empirical findings

0 2 4 6 8 10 12 14

−10

0

−15

−5

5

BFGS Iteration

T
hr

us
t

(N
/m

)

Fig. 7: The reward (time-averaged thrust) throughout the
co-shape-gait optimization of an oscillating diamond foil.
Using gradients provided by Aquarium, the L-BFGS algo-
rithm quickly converges to the near-optimized solution in 7
iterations with full convergence at 14 iterations.

from Anderson et. al. [16]. In addition, L-BFGS was able to
quickly converge to the optimized solution in only 7 itera-
tions as seen in Figure 7, showcasing the sample-efficiency
achieved by gradient-based optimization with Aquarium.

The entire optimization process had a total runtime of 6
hours on a 64-core AMD Threadripper CPU. Each simulation
rollout is performed over 100 time steps over a 300× 300
fluid grid, with the KKT system in (12) and (17) solved using
MKL Pardiso [77]. Aquarium is currently not optimized
for computational performance, and we expect an order of
magnitude improvement by solving the KKT system with a
specialized sparse linear solver and efficiently implementing
the adjoint method.

V. CONCLUSIONS
We have presented Aquarium, a fully differentiable fluid-

structure interaction simulator that provides full, analytical
gradients while accurately simulating coupled fluid and rigid-
body dynamics in 2D. Aquarium improves on existing fluid
simulators by offering three key features: 1) full differentia-
bility with analytical gradients, which enables optimization
in unsteady flow; 2) accurate and stable modeling of fluid
dynamics by applying fully implicit integration to the full
Navier-Stokes equations; and 3) explicitly formulated fluid-
structure interaction that couples fluid physics with rigid-
body dynamics. Aquarium enables a variety of optimization
tasks — including gait optimization, reinforcement learning,
and hardware-controller co-design — suited to robotics ap-
plications, where efficient locomotion may need to consider
detailed flow physics both steady and unsteady.

In future work, we plan to address the current limitations
of Aquarium, which include the lack of 3D simulation and
soft bodies. Doing so will improve sim-to-real transfer over
a wide-range of robotic systems while offering optimization
over 3D geometries and gaits. We also plan to improve
Aquarium’s computational efficiency by implementing the
adjoint method and a specialized sparse linear solver, mak-
ing Aquarium more suitable for 3D simulation and high-
dimensional optimization tasks such as the training of deep-
learning models.

REFERENCES

[1] A. P. Maertens, A. Gao, and M. S. Triantafyllou, “Optimal undulatory
swimming for a single fish-like body and for a pair of interacting
swimmers,” Journal of Fluid Mechanics, vol. 813, pp. 301–345, 2017.
Publisher: Cambridge University Press.

[2] A. Gao and M. S. Triantafyllou, “Independent caudal fin actuation
enables high energy extraction and control in two-dimensional fish-like
group swimming,” Journal of Fluid Mechanics, vol. 850, pp. 304–335,
2018. Publisher: Cambridge University Press.

[3] G. Novati, S. Verma, D. Alexeev, D. Rossinelli, W. M. Van Rees,
and P. Koumoutsakos, “Synchronisation through learning for two self-
propelled swimmers,” Bioinspiration & biomimetics, vol. 12, no. 3,
p. 036001, 2017. Publisher: IOP Publishing.

[4] R. K. Katzschmann, J. DelPreto, R. MacCurdy, and D. Rus, “Explo-
ration of underwater life with an acoustically controlled soft robotic
fish,” Science Robotics, vol. 3, no. 16, p. eaar3449, 2018.

[5] J. G. Miles and N. A. Battista, “Don’t be jelly: Exploring effective
jellyfish locomotion,” arXiv preprint arXiv:1904.09340, 2019.

[6] Y. Jiao, F. Ling, S. Heydari, N. Heess, J. Merel, and E. Kanso,
“Learning to swim in potential flow,” Physical Review Fluids, vol. 6,
May 2021. Publisher: American Physical Society (APS).

[7] M. F. Platzer, K. D. Jones, J. Young, and J. C. Lai, “Flapping wing
aerodynamics: progress and challenges,” AIAA journal, vol. 46, no. 9,
pp. 2136–2149, 2008.

[8] W. Shyy, H. Aono, S. K. Chimakurthi, P. Trizila, C.-K. Kang, C. E.
Cesnik, and H. Liu, “Recent progress in flapping wing aerodynamics
and aeroelasticity,” Progress in Aerospace Sciences, vol. 46, no. 7,
pp. 284–327, 2010.

[9] A. Loquercio, E. Kaufmann, R. Ranftl, A. Dosovitskiy, V. Koltun,
and D. Scaramuzza, “Deep drone racing: From simulation to reality
with domain randomization,” IEEE Transactions on Robotics, vol. 36,
no. 1, pp. 1–14, 2019. Publisher: IEEE.

[10] A. Appius, E. Bauer, M. Blöchlinger, A. Kalra, R. Oberson, A. Raay-
atsanati, P. Strauch, S. Suresh, M. von Salis, and R. K. Katzschmann,
“RAPTOR: Rapid Aerial Pickup and Transport of Objects by Robots,”
arXiv preprint arXiv:2203.03018, 2022.

[11] M. Triantafyllou and G. Triantafyllou, “An Efficient Swimming Ma-
chine,” Scientific American - SCI AMER, vol. 272, pp. 64–70, Mar.
1995.

[12] M. S. Triantafyllou, G. S. Triantafyllou, and D. K. P. Yue, “Hydrody-
namics of Fishlike Swimming,” Annual Review of Fluid Mechanics,
vol. 32, no. 1, pp. 33–53, 2000.

[13] W. Shyy and H. Liu, “Flapping Wings and Aerodynamic Lift: The Role
of Leading-Edge Vortices,” AIAA Journal, vol. 45, no. 12, pp. 2817–
2819, 2007.

[14] Z. R. Manchester, J. I. Lipton, R. J. Wood, and S. Kuindersma, “A
variable forward-sweep wing design for enhanced perching in micro
aerial vehicles,” in 55th AIAA Aerospace Sciences Meeting, p. 0011,
2017.

[15] J. Moore, R. Cory, and R. Tedrake, “Robust post-stall perching
with a simple fixed-wing glider using LQR-Trees,” Bioinspiration &
Biomimetics, vol. 9, p. 025013, May 2014.

[16] J. M. ANDERSON, K. STREITLIEN, D. S. BARRETT, and M. S.
TRIANTAFYLLOU, “Oscillating foils of high propulsive efficiency,”
Journal of Fluid Mechanics, vol. 360, pp. 41–72, 1998.

[17] J. M. Anderson and N. K. Chhabra, “Maneuvering and stability
performance of a robotic tuna.,” Integrative and comparative biology,
vol. 42, pp. 118–126, Feb. 2002.

[18] C. Christianson, Y. Cui, M. Ishida, X. Bi, Q. Zhu, G. Pawlak, and
M. Tolley, “Cephalopod-inspired robot capable of cyclic jet propulsion
through shape change,” Bioinspiration & biomimetics, vol. 16, Sept.
2020.

[19] C. A. Aubin, S. Choudhury, R. Jerch, L. A. Archer, J. H. Pikul,
and R. F. Shepherd, “Electrolytic vascular systems for energy-dense
robots,” Nature, vol. 571, pp. 51–57, July 2019.

[20] Y. Chen, H. Wang, E. F. Helbling, N. T. Jafferis, R. Zufferey, A. Ong,
K. Ma, N. Gravish, P. Chirarattananon, M. Kovac, and R. J. Wood, “A
biologically inspired, flapping-wing, hybrid aerial-aquatic microrobot,”
Science Robotics, vol. 2, no. 11, p. eaao5619, 2017.

[21] N. T. Jafferis, E. F. Helbling, M. Karpelson, and R. J. Wood,
“Untethered flight of an insect-sized flapping-wing microscale aerial
vehicle,” Nature, vol. 570, pp. 491–495, June 2019.

[22] E. Farrell Helbling and R. J. Wood, “A review of propulsion, power,
and control architectures for insect-scale flapping-wing vehicles,”
Applied Mechanics Reviews, vol. 70, no. 1, 2018.

[23] J. Z. Zhang, Y. Zhang, P. Ma, E. Nava, T. Du, P. Arm, W. Matusik,
and R. K. Katzschmann, “Learning Material Parameters and Hydro-
dynamics of Soft Robotic Fish via Differentiable Simulation,” arXiv
preprint arXiv:2109.14855, 2021.

[24] P. Ma, T. Du, J. Z. Zhang, K. Wu, A. Spielberg, R. K. Katzschmann,
and W. Matusik, “Diffaqua: A differentiable computational design
pipeline for soft underwater swimmers with shape interpolation,” ACM
Transactions on Graphics (TOG), vol. 40, no. 4, pp. 1–14, 2021.
Publisher: ACM New York, NY, USA.

[25] W. M. van Rees, M. Gazzola, and P. Koumoutsakos, “Optimal
morphokinematics for undulatory swimmers at intermediate Reynolds
numbers,” Journal of Fluid Mechanics, vol. 775, pp. 178–188, 2015.
Publisher: Cambridge University Press.

[26] E. Nava, J. Z. Zhang, M. Y. Michelis, T. Du, P. Ma, B. F. Grewe,
W. Matusik, and R. K. Katzschmann, “Fast Aquatic Swimmer Opti-
mization with Differentiable Projective Dynamics and Neural Network
Hydrodynamic Models,” in International Conference on Machine
Learning, pp. 16413–16427, PMLR, 2022.

[27] D. N. BEAL, F. S. HOVER, M. S. TRIANTAFYLLOU, J. C. LIAO,
and G. V. LAUDER, “Passive propulsion in vortex wakes,” Journal of
Fluid Mechanics, vol. 549, pp. 385–402, 2006.

[28] T. A. Howell, S. Le Cleac’, J. Z. Kolter, M. Schwager, and Z. Manch-
ester, “Dojo: A Differentiable Simulator for Robotics,” 2022.

[29] R. Tedrake and t. D. D. Team, “Drake: Model-based design and
verification for robotics,” 2019.

[30] E. Todorov, T. Erez, and Y. Tassa, “MuJoCo: A physics engine for
model-based control,” in 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 5026–5033, 2012.

[31] E. Heiden, D. Millard, E. Coumans, Y. Sheng, and G. S. Sukhatme,
“NeuralSim: Augmenting Differentiable Simulators with Neural Net-
works,” in Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), 2021.

[32] C. D. Freeman, E. Frey, A. Raichuk, S. Girgin, I. Mordatch, and
O. Bachem, “Brax–A Differentiable Physics Engine for Large Scale
Rigid Body Simulation,” arXiv preprint arXiv:2106.13281, 2021.

[33] M. Geilinger, D. Hahn, J. Zehnder, M. Bächer, B. Thomaszewski,
and S. Coros, “Add: Analytically differentiable dynamics for multi-
body systems with frictional contact,” ACM Transactions on Graphics
(TOG), vol. 39, no. 6, pp. 1–15, 2020.

[34] K. Werling, D. Omens, J. Lee, I. Exarchos, and C. K. Liu, “Fast and
feature-complete differentiable physics for articulated rigid bodies with
contact,” arXiv preprint arXiv:2103.16021, 2021.

[35] J. Degrave, M. Hermans, J. Dambre, and others, “A differentiable
physics engine for deep learning in robotics,” Frontiers in neuro-
robotics, p. 6, 2019.

[36] T. Du, K. Wu, P. Ma, S. Wah, A. Spielberg, D. Rus, and W. Matusik,
“Diffpd: Differentiable projective dynamics,” ACM Transactions on
Graphics (TOG), vol. 41, no. 2, pp. 1–21, 2021. Publisher: ACM
New York, NY.

[37] Y. Hu, J. Liu, A. Spielberg, J. B. Tenenbaum, W. T. Freeman, J. Wu,
D. Rus, and W. Matusik, “Chainqueen: A real-time differentiable
physical simulator for soft robotics,” in 2019 International conference
on robotics and automation (ICRA), pp. 6265–6271, IEEE, 2019.

[38] B. Amos and J. Z. Kolter, “Optnet: Differentiable optimization as a
layer in neural networks,” in International Conference on Machine
Learning, pp. 136–145, PMLR, 2017.

[39] F. de Avila Belbute-Peres, K. Smith, K. Allen, J. Tenenbaum, and J. Z.
Kolter, “End-to-end differentiable physics for learning and control,”
Advances in neural information processing systems, vol. 31, 2018.

[40] Y. Chen, A. L. Desbiens, and R. J. Wood, “A computational tool to
improve flapping efficiency of robotic insects,” in 2014 IEEE Inter-
national Conference on Robotics and Automation (ICRA), pp. 1733–
1740, 2014.

[41] N. A. Battista, W. C. Strickland, and L. A. Miller, “IB2d: a Python
and MATLAB implementation of the immersed boundary method,”
Bioinspiration & biomimetics, vol. 12, no. 3, p. 036003, 2017.

[42] C. Bernier, M. Gazzola, R. Ronsse, and P. Chatelain, “Simulations of
propelling and energy harvesting articulated bodies via vortex particle-
mesh methods,” Journal of Computational Physics, vol. 392, pp. 34–
55, 2019.

[43] H. Jasak, “OpenFOAM: open source CFD in research and industry,”
International Journal of Naval Architecture and Ocean Engineering,
vol. 1, pp. 89–94, Dec. 2009.

[44] F. Palacios, T. D. Economon, A. Aranake, S. R. Copeland, A. K.
Lonkar, T. W. Lukaczyk, D. E. Manosalvas, K. R. Naik, S. Padron,

B. Tracey, and others, “Stanford university unstructured (SU2): Anal-
ysis and design technology for turbulent flows,” in 52nd Aerospace
Sciences Meeting, p. 0243, 2014.

[45] U. Manual, “ANSYS FLUENT 12.0,” Theory Guide, 2009.
[46] Siemens Digital Industries Software, “Simcenter STAR-CCM+ User

Guide v. 2021.1,” 2021.
[47] P. Holl, V. Koltun, K. Um, and N. Thuerey, “phiflow: A differentiable

pde solving framework for deep learning via physical simulations,” in
NeurIPS Workshop, vol. 2, 2020.

[48] D. A. Bezgin, A. B. Buhendwa, and N. A. Adams, “JAX-FLUIDS:
A fully-differentiable high-order computational fluid dynamics solver
for compressible two-phase flows,” arXiv preprint arXiv:2203.13760,
2022.

[49] T. Du, K. Wu, A. Spielberg, W. Matusik, B. Zhu, and E. Sifakis,
“Functional optimization of fluidic devices with differentiable stokes
flow,” ACM Transactions on Graphics (TOG), vol. 39, no. 6, pp. 1–15,
2020. Publisher: ACM New York, NY, USA.

[50] W. Liu, K. Bai, X. He, S. Song, C. Zheng, and X. Liu, “FishGym:
A High-Performance Physics-based Simulation Framework for Under-
water Robot Learning,” arXiv preprint arXiv:2206.01683, 2022.

[51] C. S. Peskin, “The immersed boundary method,” Acta numerica,
vol. 11, pp. 479–517, 2002.

[52] K. Taira and T. Colonius, “The immersed boundary method: A
projection approach,” Journal of Computational Physics, vol. 225,
no. 2, pp. 2118–2137, 2007.

[53] J. B. Perot, “An Analysis of the Fractional Step Method,” Journal of
Computational Physics, vol. 108, no. 1, pp. 51–58, 1993.

[54] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary,
D. Maclaurin, G. Necula, A. Paszke, J. VanderPlas, S. Wanderman-
Milne, and Q. Zhang, “JAX: composable transformations of
Python+NumPy programs,” 2018.

[55] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, and others, “Pytorch: An
imperative style, high-performance deep learning library,” Advances in
neural information processing systems, vol. 32, 2019.

[56] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Y. Jia, Rafal Jozefowicz, Lukasz
Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat
Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,
Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol
Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu,
and Xiaoqiang Zheng, “TensorFlow: Large-Scale Machine Learning
on Heterogeneous Systems,” 2015.

[57] A. Jameson, “Aerodynamic design via control theory,” Journal of
Scientific Computing, vol. 3, pp. 233–260, Sept. 1988.

[58] G. K. Kenway, C. A. Mader, P. He, and J. R. Martins, “Effective adjoint
approaches for computational fluid dynamics,” Progress in Aerospace
Sciences, vol. 110, p. 100542, 2019. Publisher: Elsevier.

[59] Y. Bazilevs, M.-C. Hsu, and M. T. Bement, “Adjoint-based Control of
Fluid-Structure Interaction for Computational Steering Applications,”
Procedia Computer Science, vol. 18, pp. 1989–1998, 2013.

[60] M. P. Rumpfkeil and D. W. Zingg, “The optimal control of unsteady

flows with a discrete adjoint method,” Optimization and Engineering,
vol. 11, pp. 5–22, 2010. Publisher: Springer.

[61] X. An, D. Floryan, and C. Rowley, “Optimal Gaits of Fish-like
Swimming,” Jan. 2021.

[62] J. Grover, J. Zimmer, T. Dear, M. Travers, H. Choset, and S. D.
Kelly, “Geometric Motion Planning for a Three-Link Swimmer in a
Three-Dimensional low Reynolds-Number Regime,” in 2018 Annual
American Control Conference (ACC), pp. 6067–6074, 2018.

[63] J. Grover and D. Vedova, “Motion planning, design optimization
and fabrication of ferromagnetic swimmers,” in Robotics science and
systems, 2019.

[64] X. Tu and D. Terzopoulos, “Artificial fishes: Physics, locomotion,
perception, behavior,” in Proceedings of the 21st annual conference
on Computer graphics and interactive techniques, pp. 43–50, 1994.

[65] S. Min, J. Won, S. Lee, J. Park, and J. Lee, “Softcon: Simulation
and control of soft-bodied animals with biomimetic actuators,” ACM
Transactions on Graphics (TOG), vol. 38, no. 6, pp. 1–12, 2019.
Publisher: ACM New York, NY, USA.

[66] M.-C. Lai and C. S. Peskin, “An immersed boundary method with
formal second-order accuracy and reduced numerical viscosity,” Jour-
nal of computational Physics, vol. 160, no. 2, pp. 705–719, 2000.
Publisher: Elsevier.

[67] J. Kim and P. Moin, “Application of a fractional-step method to
incompressible Navier-Stokes equations,” Journal of computational
physics, vol. 59, no. 2, pp. 308–323, 1985. Publisher: Elsevier.

[68] S. V. Patankar and D. B. Spalding, “A calculation procedure for heat,
mass and momentum transfer in three-dimensional parabolic flows,” in
Numerical prediction of flow, heat transfer, turbulence and combustion,
pp. 54–73, Elsevier, 1983.

[69] J. Nocedal and S. J. Wright, Numerical Optimization. Springer,
second ed., 2006.

[70] S. Barratt, “On the differentiability of the solution to convex optimiza-
tion problems,” arXiv preprint arXiv:1804.05098, 2018.

[71] U. Dini, Lezioni di analisi infinitesimale, vol. 1. Fratelli Nistri, 1907.
[72] Y. Zhang and R. K. Katzschmann, “Creation of a Modular Soft Robotic

Fish Testing Platform,” arXiv preprint arXiv:2201.04098, 2022.
[73] D. J. Tritton, “Experiments on the flow past a circular cylinder at

low Reynolds numbers,” Journal of Fluid Mechanics, vol. 6, no. 4,
pp. 547–567, 1959. Publisher: Cambridge University Press.

[74] W. W. Ren, J. Wu, C. Shu, and W. M. Yang, “A stream
function–vorticity formulation-based immersed boundary method
and its applications,” International Journal for Numerical Meth-
ods in Fluids, vol. 70, no. 5, pp. 627–645, 2012. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/fld.2705.

[75] M. Braza, P. Chassaing, and H. H. Minh, “Numerical study and
physical analysis of the pressure and velocity fields in the near wake of
a circular cylinder,” Journal of Fluid Mechanics, vol. 165, pp. 79–130,
1986. Publisher: Cambridge University Press.

[76] A. Lukezic, T. Vojir, L. ˇCehovin Zajc, J. Matas, and M. Kristan,
“Discriminative correlation filter with channel and spatial reliability,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 6309–6318, 2017.

[77] O. Schenk, K. Gärtner, W. Fichtner, and A. Stricker, “PARDISO:
a high-performance serial and parallel sparse linear solver in semi-
conductor device simulation,” Future Generation Computer Systems,
vol. 18, no. 1, pp. 69–78, 2001.

	INTRODUCTION
	RELATED WORKS
	Differentiable Fluid Dynamics
	Design Optimization using Adjoint Methods
	Fluid-Structure Interaction for Optimization

	DIFFERENTIABLE FLUID-STRUCTURE INTERACTION
	Implicit Fluid Model
	Fluid-Structure Interaction Model
	Simulation Gradients

	EXPERIMENTAL RESULTS
	Cylinder in Free Stream
	Soft Robotic Fish Tail
	Optimization using Aquarium Gradients

	CONCLUSIONS
	References

