
ALTRO: A Fast Solver for Constrained Trajectory Optimization

Taylor A. Howell1∗, Brian E. Jackson1∗, and Zachary Manchester2

Abstract— Trajectory optimization is a widely used tool for
robot motion planning and control. Existing solvers for these
problems either rely on off-the-shelf nonlinear programming
solvers that are numerically robust and capable of handling
arbitrary constraints, but tend to be slow because they are
general purpose; or they use custom numerical methods that
take advantage of the problem structure to be fast, but often
lack robustness and have limited or no ability to reason
about constraints. This paper presents ALTRO (Augmented
Lagrangian TRajectory Optimizer), a solver for constrained
trajectory optimization problems that handles general nonlin-
ear state and input constraints and offers fast convergence
and numerical robustness thanks to careful exploitation of
problem structure. We demonstrate its performance on a set of
benchmark motion-planning problems and offer comparisons
to the standard direct collocation method with large-scale
sequential quadratic programming and interior-point solvers.

I. INTRODUCTION

Trajectory optimization is a powerful tool for motion plan-
ning, enabling the synthesis of dynamic motion for complex
underactuated robotic systems. This general framework can
be applied to robots with nonlinear dynamics and constraints
where other motion planning paradigms—such as sample-
based planning, inverse dynamics, or differential flatness—
might be ineffective or impractical.

Numerical trajectory optimization algorithms solve varia-
tions of the following problem,

minimize
x0:N , u0:N−1,∆t

`N (xN ) +

N−1∑
k=0

`k(xk, uk,∆t)

subject to xk+1 = f(xk, uk,∆t),

gk(xk, uk) ≤ 0,

hk(xk, uk) = 0,

(1)

where k is the time-step index, `N and `k are the terminal
and stage costs, xk and uk are the states and control inputs,
∆t is the duration of a time step, f(xk, uk,∆t) is the discrete
dynamics, and gk(xk, uk) and hk(xk, uk) are inequality and
equality constraints.

To solve such problems, “direct” methods treat both states
and controls as decision variables and use general-purpose
nonlinear programming (NLP) solvers, such as SNOPT [1]
and IPOPT [2], that tend to be versatile and robust. It
is straight forward to provide an initial state trajectory to
the solver with such methods, even if the trajectory is
dynamically infeasible. Direct transcription (DIRTRAN) [3]

1Department of Mechanical Engineering, Stanford University, USA
{thowell,bjack205}@stanford.edu

2Department of Aeronautics and Astronautics, Stanford University, USA
zacmanchester@stanford.edu

∗These authors contributed equally to this work

and direct collocation (DIRCOL) [4] are common direct
methods.

Alternatively, “indirect” methods exploit the Markov struc-
ture of (1) and only treat the control inputs as decision
variables, with the dynamics constraints implicitly enforced
by simulating the system’s dynamics. Differential Dynamic
Programming (DDP) [5] and iterative LQR (iLQR) [6] are
closely related indirect methods that solve (1) by breaking
it into a sequence of smaller sub-problems. Because of
their strict enforcement of dynamic feasibility, it is often
difficult to find a control sequence that produces a reasonable
initialization for DDP methods. While they are fast and
have a low memory footprint, making them amenable to
embedded implementation, DDP methods have historically
been considered less numerically robust and less well-suited
to handling nonlinear state and input constraints.

Several efforts have been made to incorporate constraints
into DDP methods: box constraints on controls [7] and stage-
wise inequality constraints on the states [8], [9] have been
handled by solving a constrained quadratic program (QP) at
each sub-problem step. A projection method was also devised
that satisfies linearized terminal state and stage state-control
constraints [10]. Augmented Lagrangian (AL) methods have
been proposed [11], including hybrid approaches that also
solve constrained QPs for stage state-control constraints [9],
[12]. Mixed state-control constraints have also been handled
using a penalty method [13]. Unfortunately, all of these
methods either have limitations on the types of constraints
they can handle, or suffer from numerical instability and
conditioning issues.

This paper presents ALTRO (Augmented Lagrangian TRa-
jectory Optimizer), a solver for constrained trajectory opti-
mization problems of the form (1), that combines the best
characteristics of direct and DDP methods, namely: speed,
numerical robustness, handling of general state and input
constraints, and initialization with infeasible state trajecto-
ries. ALTRO combines iLQR with an augmented Lagrangian
method to handle general state and input constraints and an
active-set projection method for final “solution polishing”
to achieve fast and robust overall convergence. Our novel
contributions are: 1) a numerically robust square-root formu-
lation of the DDP algorithm, 2) a method for initializing DDP
with an infeasible state trajectory, 3) a strategy for solving
minimum-time problems with DDP, and 4) an objective-
weighted Newton projection method for solution polishing.

The remainder of the paper is organized as follows:
Section II reviews the iLQR algorithm with augmented
Lagrangian constraint handling, which we denote AL-iLQR,
along with some results on matrix square roots. Section



III presents the ALTRO algorithm in detail. Comparisons
between ALTRO and DIRCOL are then provided for several
motion-planning problems in Section IV. Finally, we sum-
marize our findings in Section V.

II. BACKGROUND

Notation: For a function `(x, u) : Rn×Rm → R, we define
`x ≡ ∂`/∂x ∈ Rn, `xx ≡ ∂2`/∂x2 ∈ Rn×n, and `xu ≡
∂2`/∂x∂u ∈ Rn×m. We also use the notation (A,B,C) to
indicate the vertical concatenation of matrices, [ATBTCT ]T .

A. Augmented Lagrangian iLQR

We present a succinct description of AL-iLQR comprising
two parts: the modified iLQR iteration, and the Lagrange
multiplier and penalty updates used between successive
iLQR steps.

1) Modified iLQR: From (1), the augmented Lagrangian
is:

LA(X,U, λ, µ) = `N (xN )

+ (λN +
1

2
IµN

cN (xN ))T cN (xN ) +

N−1∑
k=0

`k(xk, uk,∆t)

+ (λk +
1

2
Iµk

ck(xk, uk))T ck(xk, uk)

= LN (xN , λN , µN ) +

N−1∑
k=0

Lk(xk, uk, λk, µk)

(2)
where λk ∈ Rpk is a Lagrange multiplier, µk ∈ Rpk is a
penalty weight, and ck = (gk, hk) ∈ Rpk is the concatenated
set of inequality and equality constraints with index sets Ik
and Ek, respectively. Iµk

is a diagonal matrix defined as,

Iµk,ii =

{
0 if cki(xk, uk) < 0 ∧ λki = 0, i ∈ I
µki otherwise,

(3)

where ki indicates the ith constraint at time step k.
The dynamics constraints are handled implicitly using

an initial state x0 and nominal control trajectory, U =
{u0, . . . , uN−1}, to simulate forward the state trajectory
X = {x0 . . . , xN}.

The backward pass is derived by defining the optimal cost-
to-go for fixed multipliers and penalty terms, V |λ,µ, and the
recurrence relationship,

VN (xN )|λ,µ = LN (xN , λN , µN )

Vk(xk)|λ,µ = min
uk

{Lk(xk, uk, λk, µk)

+ Vk+1(f(xk, uk))|λ,µ}
= min

uk

Q(xk, uk)|λ,µ,

where Qk = Q(xk, uk)|λ,µ is the action-value function. To
make the dynamic programming step tractable, we take a
second-order Taylor expansion of Vk with respect to the state
variable and fixed λ and µ,

δVk ≈ pTk δxk +
1

2
δxTk Pkδxk, (4)

resulting in the optimal terminal cost-to-go second-order
expansion,

pN = (`N )x + (cN )Tx (λ+ IµN
cN ) (5)

PN = (`N )xx + (cN )Tx IµN
(cN )x. (6)

The relationship between δVk and δVk+1 is derived by
taking the second-order Taylor expansion of Qk with respect
to the state and control,

δQk =
1

2

[
δxk
δuk

]T [
Qxx Qxu
Qux Quu

] [
δxk
δuk

]
+

[
Qx
Qu

]T [
δxk
δuk

]
(7)

Dropping the time-step indices for notational clarity, the
block matrices are,

Qxx = `xx +ATP ′A+ cTx Iµcx (8)

Quu = `uu +BTP ′B + cTu Iµcu (9)

Qux = `ux +BTP ′A+ cTu Iµcx (10)

Qx = `x +AT p′ + cTx (λ+ Iµc) (11)

Qu = `u +BT p′ + cTu (λ+ Iµc), (12)

where A = ∂f/∂x|xk,uk
, B = ∂f/∂u|xk,uk

, and ′ indicates
variables at the k + 1 time step. Consistent with the use of
linearized dynamics in iLQR, linearized constraints are also
used in the expansion.

Minimizing (7) with respect to δuk gives a correction to
the control trajectory. The result is a feedforward term dk
and a linear feedback term Kkδxk. Regularization is added
to ensure the invertibility of Quu:

δu∗k = −(Quu+ρI)−1(Quxδxk+Qu) ≡ Kkδxk+dk. (13)

Substituting δu∗k back into (7), a closed-form expression
for pk, Pk, and the expected change in cost, ∆Vk, is found:

Pk = Qxx +KT
k QuuKk +KT

k Qux +QxuKk (14)

pk = Qx +KT
k Quudk +KT

k Qu +Qxudk (15)

∆Vk = dTkQu +
1

2
dTkQuudk. (16)

A forward pass then simulates the system using the cor-
rection to the nominal control trajectory and a line search is
performed on the feedforward term dk to ensure a reduction
in cost.

2) Augmented Lagrangian Updates: After an iLQR step
with λ and µ held constant, the dual variables are updated
according to,

λ+ki =

{
λki + µkicki(x

∗
k, u
∗
k) i ∈ Ek

max(0, λki + µkicki(x
∗
k, u
∗
k)) i ∈ Ik,

(17)

and the penalty is increased monotonically according to the
schedule,

µ+
ki

= φµki , (18)

where φ > 1 is a scaling factor. The solve-update cycle
is then repeated until a desired optimality and constraint
tolerances are achieved. DDP variants have previously been
used to solve the inner minimization of the AL method with
good results [9], [11].



Algorithm 1 AL-iLQR
1: function AL-ILQR(x0, U, tol.)
2: Initialize λ, µ, φ
3: while max(c) > tol. do
4: minimize LA(X,U, λ, µ) using iLQR
5: Update λ using (17), update µ using (18)
6: end while
7: return X,U, λ
8: end function

B. Matrix Square Roots

The QR decomposition F = QR returns an upper tri-
angular matrix R and orthogonal matrix Q. The Cholesky
decomposition G = UTU of a positive-definite matrix G
returns an upper-triangular “square-root” matrix U , which
we denote U =

√
G. For A, B ∈ Rn×n, we use these

factorizations to calculate
√
A+B from

√
A and

√
B.

Note that A + B =
[√

A
T √

B
T
]

(
√
A,
√
B) = FTF ,

where F ∈ R2n×n. Using the QR decomposition F =
QR, A + B = RTQTQR = RTR, which gives us a
Cholesky factor R =

√
A+B. We define

√
A+B ←

QR
(

(
√
A,
√
B)
)

. Similarly,
√
A−B can be computed by

performing successive rank-one downdates on
√
A using the

rows of
√
B. We define

√
A−B ← DD(

√
A,
√
B).

III. ALTRO

ALTRO (Algorithm 4) comprises two stages: The first
stage solves (1) rapidly to a coarse tolerance using a version
of AL-iLQR with several novel refinements. The second
stage uses the coarse solution from the first stage to warm
start an active-set projection method that achieves high-
precision constraint satisfaction. We now present our exten-
sions to AL-iLQR, as well as the details of the projection
method.

A. Square-Root Backward Pass

For AL methods to achieve fast convergence, the penalty
terms must be increased to large values, which can result in
severe numerical ill-conditioning [14]. To help mitigate this
issue and make ALTRO more numerically robust, especially
on embedded processors with limited numerical precision,
we introduce a square-root backward pass inspired by the
square-root Kalman filter [15].

We now derive recursive expressions for the following
upper-triangular Cholesky factors: S ≡

√
P ,Zxx ≡

√
Qxx,

and Zuu ≡
√
Quu, using the methods from section II-B. The

square root of the terminal cost-to-go Hessian (6) is,

SN ← QR
(

(
√

(`N )xx,
√
IµN

(cN )x)
)
, (19)

and the action-value expansion factorizations, (8) and (9),
are,

Zxx ← QR
(

(
√
`xx, S

′
A,
√
Iµcx)

)
(20)

Zuu ← QR
(

(
√
`uu, S

′
B,
√
Iµcu,

√
ρI)
)
, (21)

The gains K and d from (13) are expressed in square-root
form as,

K = −Z−1uuZ−Tuu Qux (22)

d = −Z−1uuZ−Tuu Qu, (23)

and the gradient (15) and expected change (16) of the cost-
to-go are,

p = Qx + (ZuuK)T (Zuud) +KTQu +Qxud (24)

∆V = dTQu +
1

2
(Zuud)T (Zuud). (25)

The square root of the the cost-to-go Hessian (14)—which
frequently exhibits the worst numerical conditioning—is
derived by assuming the following upper-triangular Cholesky
factorization,

P =

[
I
K

]T [
ZTxx 0
CT DT

] [
Zxx C

0 D

] [
I
K

]
=

[
Zxx + CK

DK

]T [
Zxx + CK

DK

]
(26)

where,

C = Z−Txx Qxu (27)

D =

√
ZTuuZuu −QuxZ−1xx Z−Txx Qxu. (28)

S can then be computed with a QR decomposition:

S ← QR

([
Zxx + Z−Txx QxuK

DD(Zuu, Z
−T
xx Qxu)K

])
. (29)

B. Infeasible State Trajectory Initialization

Desired state trajectories can often be identified (e.g.,
from sampling-based planners or expert knowledge), whereas
finding a control trajectory that will produce this result is
usually challenging. Dynamically infeasible state trajectory
initialization is enabled by introducing additional inputs to
the dynamics with slack controls s ∈ Rn,

xk+1 = f(xk, uk) + sk, (30)

to make the system artificially fully actuated.
Given initial state and control trajectories, X̃ and U , the

initial infeasible controls s0:N−1 are computed as the differ-
ence between the desired state trajectory and the dynamics
at each time step:

sk = x̃k+1 − f(x̃k, uk) (31)

The optimization problem (1) is modified by replacing the
dynamics with (30). An additional cost term,

N−1∑
k=0

1

2
sTkRssk, (32)



and constraints sk = 0, k=0, . . . , N−1 are also added to
the problem. Since sk = 0 at convergence, a dynamically
feasible solution to (1) is still obtained.

C. Time-Penalized Problems

Minimum-time, or more general time-penalized problems,
can be solved by considering τk =

√
∆tk ∈ R as an

input at each time step. To ensure the solver does not
exploit discretization errors in the system dynamics, equality
constraints must be added between time step durations. The
optimization problem (1) is modified to use dynamics,[

xk+1

δk+1

]
=

[
f(xk, uk, τk)

τk

]
, (33)

with an additional cost term,
N−1∑
k=0

Rττ
2
k , (34)

subject to δk = τk, k=1, . . . , N−1 constraints, and upper
and lower bounds on τk.

Algorithm 2 Projection
1: function PROJECTION(Y, tol.)
2: H−1 ← invert Hessian of objective
3: while ‖d‖∞ > tol. do
4: d,D ← linearize active constraints
5: S ←

√
DH−1DT

6: v ← ‖d‖∞
7: r ←∞
8: while v > tol. and r > conv. rate tol. do
9: Y, v+ ← LINESEARCH(Y, S,H−1, D, d, v)

10: r ← log v+/ log v
11: end while
12: end while
13: return Y
14: end function

Algorithm 3 Projection Line Search
1: function LINESEARCH(Y, S,H−1, D, d, v0)
2: Initialize α, γ
3: while v > v0 do
4: δYp ← H−1DT (S−1S−T d)
5: Ȳp ← Yp + αδYp
6: d← UPDATECONSTRAINTS(Ȳp)
7: v ← ‖d‖∞
8: α← γα
9: end while

10: return Ȳ , v
11: end function

D. Active-Set Projection Method

The coarse primal and dual trajectories, Y ← X,U, λ,
returned from the AL-iLQR stage of ALTRO are used to
warm start an active-set projection method (Algorithm 2).

This hybrid approach avoids the numerical ill-conditioning
and slow tail convergence exhibited by AL methods when
the penalty weights are made large. To ensure strict satisfac-
tion of the dynamics and constraints, the current solution
is projected onto the manifold associated with the active
constraints d. The norm used to compute distances from
this manifold is weighted by the Hessian of the objective
H . Algorithm 2 takes successive Newton steps δY , only
updating the constraint Jacobian D when the convergence
rate r drops below a threshold, allowing re-use of the
same matrix factorization S for inexpensive linear system
solutions. Further, this algorithm can be implemented in a
sequential manner [16] that does not require building large
matrices, making it amenable to embedded systems.

Algorithm 4 ALTRO
1: procedure
2: Initialize x0, U, tolerances; X̃
3: if Infeasible Start then
4: X ← X̃ , s0:N−1 ← from (31)
5: else
6: X ← Simulate from x0 using U
7: end if
8: X,U, λ← AL-ILQR(X,U, tol.)
9: (X,U, λ)← PROJECTION((X,U, λ), tol.)

10: return X,U
11: end procedure

IV. SIMULATION RESULTS

ALTRO’s timing and constraint-satisfaction performance
is compared to DIRCOL [4] on a number of benchmark
motion-planning problems. Each problem uses a quadratic
objective, has initial and terminal state constraints, is solved
to constraint satisfaction cmax = 1e-8 (cmax = 1e-6 for
time-penalized problems), and is performed on a desktop
computer with an AMD Ryzen Threadripper 2950x processor
and 16GB RAM. ALTRO is implemented purely in the Julia
programming language, while DIRCOL uses the Ipopt and
SNOPT NLP solvers through a Julia interface. DIRCOL is
provided the dynamically feasible state trajectory computed
during the initial forward simulation from ALTRO. Further
details regarding the problems and parameters used, along
with full source code, is available on GitHub.

A. Problem Descriptions

1) 1D Block Move: Double Integrator with two states and
one input. The system is tasked to move one unit length
subject to control limits.

2) Pendulum: The system must swing from the down-
ward equilibrium to the upward equilibrium point subject to
control limits.

3) Acrobot: Double pendulum system limited to actuation
at the “elbow” joint. Tasked with swinging upright from the
downward position.

4) Cartpole: The system must perform a swing-up ma-
neuver while obeying control limits.



0 1 2 3 4 5

10−8

10−6

10−4

10−2

100

time (s)

m
ax

im
um

co
ns

tr
ai

nt
vi

ol
at

io
n SNOPT

Ipopt
AL-iLQR
ALTRO

Projected Newton

Fig. 1. Maximum constraint violation comparison for the cartpole.
After solving to a coarse tolerance, ALTRO performs a single iteration of
Algorithm 2 and converges to the specified constraint tolerance. AL-iLQR
fails to converge to the specified tolerance without the projection step.

SNOPT
Ipopt

ALTRO

Fig. 2. Trajectories for the Reeds-Shepp car with obstacles. ALTRO and
Ipopt converge to similar trajectories, while SNOPT finds a different solution
that exploits discretization error. Yellow and red markers are start and goal
positions, respectively.

5) Reeds-Shepp Car: A differential-drive system with
three states and two controls that can move forward or
backward [17] performs a few different tasks: Parallel Park:
Move one unit in the direction perpendicular to the direction
of motion (i.e., “sideways”) and end in the same orientation
while obeying state and control constraints. Also performed
with time penalization. Obstacles: Move to goal while avoid-
ing 3 circular obstacles (Figure 2). Escape: Shown in Figure
3, the car must move from one “room” to another while
obeying control limits. For this task, solvers are initialized
with a state trajectory interpolated from 6 2D positions.

6) Robot Arm: A serial manipulator with 14 states and 7
inputs, modeled after the Kuka iiwa, is tasked with moving
from an initial to final configuration through an environment
with obstacles and subject to torque limits (Figure 4). The
control trajectory is initialized to compensate for gravity.

7) Quadrotor: The system with 13 states (quaternion
angular representation) and 4 inputs is tasked with navigating
through a maze with floor and ceiling constraints (Figure 5).
Inputs are bounded and initialized to perform hovering. For
the maze task, solvers are initialized with a state trajectory

initial guess
SNOPT

Ipopt
AL-iLQR
ALTRO

Fig. 3. 2D position trajectories for car escape problem. ALTRO, Ipopt, and
SNOPT converge to the same solution, but AL-iLQR fails to find a collision-
free trajectory. Yellow and red markers indicate start and goal positions,
respectively.

Fig. 4. Front (left) and side (right) views of the Kuka iiwa arm moving
its end effector from an initial position (red) to a desired position (green)
while avoid obstacles.

interpolated from 7 3D positions.
Timing results for the benchmark problems are included

in Table I. ALTRO is 2-5 times faster than both SNOPT and
Ipopt for most problems, except for time-penalized problems,
where DIRCOL performs considerably better than ALTRO.
Constraint satisfaction versus solver time is shown for the
cartpole problem in Figure 1. Infeasible state trajectory ini-
tialization is demonstrated on the Car Escape and Quadrotor
Maze problems where AL-iLQR fails to find collision free
trajectories. DIRCOL was unable to find feasible solutions
for the Robot Arm and Quadrotor Maze obstacle avoidance
problems.

V. DISCUSSION

ALTRO performs competitively in terms of both compu-
tation time and constraint satisfaction when compared to
DIRCOL on a variety of benchmark problems. ALTRO’s
rapid convergence on constraint satisfaction demonstrated in
Figure 1 is typical of all the benchmark problems. By using
an AL method to make rapid initial progress, then switching
to an active-set method once the active inequality constraints
are known, fast convergence can be achieved throughout the
entire solve process.



Fig. 5. Quadrotor navigating maze environment.

TABLE I
RUNTIME PEFORMANCE: ALTRO VS DIRCOL

System ALTRO Ipopt SNOPT
Block Move 12 ms 26 ms 31 ms
Pendulum 65 ms 213 ms 646 ms

Pendulum Time Pen. 848 ms 134 ms 225 ms
Acrobot 1.2 s 11.9 s 6.1 s
Cartpole 661 ms 1.1 s 3.8 s

Parallel Park 63 ms 138 ms 385 ms
Parallel Park Time Pen. 5.0 s 175 ms 119 ms

Car w/ 3 Obs. 136 ms 935 ms 2.4 s
Car Escape 1.2 s 9.2 s 37.2 s

Kuka w/ Obs. 9.2 s - -
Quadrotor Line 2.3 s 4.9 s 7.9 s
Quadrotor Maze 33.0 s - -

For time-penalized problems, DIRCOL finds lower total
trajectory times and solves faster and more reliably compared
to ALTRO. This may be due to inherent sensitivity to initial
time steps in shooting methods like iLQR.

One of ALTRO’s most significant advantages over AL-
iLQR and other DDP methods is the ability to be initialized
with infeasible state trajectories. Even though the dimension
of the input vector is increased, ALTRO is able to solve these
problems reliably and faster than DIRCOL.

DIRCOL was unable to find feasible solutions for two of
the obstacle avoidance problems. This is likely due to the
way constraints were represented in simulation as well as
the differences in the way constraints are handled between
the penalty, interior point, and active-set methods used by
ALTRO, Ipopt, and SNOPT, respectively.

Future improvements to ALTRO include parallelization
of constraint and Jacobian evaluations, cost expansions, and
dynamics simulations, while more significant parallelization
may be achieved using Alternating Direction Method of
Multipliers techniques, a natural extension to the AL method
used in ALTRO. The sequential version of Algorithm 2
will make ALTRO more amenable to implementation on
embedded hardware. Future work will investigate using
ALTRO to solve bi-level optimization problems including
contact-implicit trajectory optimization and Stackelberg com-
petitions.

In conclusion, we have presented a new solver for con-
strained trajectory optimization problems, ALTRO, that com-
bines the advantages of direct and DDP methods. Compared
to a standard tool for robot motion planning, DIRCOL,
ALTRO exhibits comparable capabilities and typically faster
solve times on a variety of benchmark problems. Our imple-
mentation of ALTRO is available at https://github.com/

RoboticExplorationLab/TrajectoryOptimization.jl.

ACKNOWLEDGEMENTS

This work was supported by a NASA Early Career Faculty
Award (Grant Number 80NSSC18K1503). This material is
based upon work supported by the National Science Foun-
dation Graduate Research Fellowship Program under Grant
No. DGE-1656518. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the
National Science Foundation.

REFERENCES
[1] P. E. Gill, W. Murray, and M. A. Saunders, “SNOPT: An SQP Algorithm for

Large-scale Constrained Optimization,” SIAM Review, vol. 47, no. 1, pp. 99–
131, 2005.

[2] A. Wächter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming,” en,
Mathematical Programming, vol. 106, no. 1, pp. 25–57, Mar. 2006.

[3] D. Pardo, L. Möller, M. Neunert, A. W. Winkler, and J. Buchli, “Evaluating
direct transcription and nonlinear optimization methods for robot motion
planning,” pp. 1–9, Apr. 2015.

[4] C. R. Hargraves and S. W. Paris, “Direct Trajectory Optimization Using
Nonlinear Programming and Collocation,” J. Guidance, vol. 10, no. 4,
pp. 338–342, 1987.

[5] D. Q. Mayne, “A second-order gradient method of optimizing non- linear
discrete time systems,” Int J Control, vol. 3, p. 8595, 1966.

[6] W. Li and E. Todorov, “Iterative Linear Quadratic Regulator Design for Non-
linear Biological Movement Systems,” in Proceedings of the 1st International
Conference on Informatics in Control, Automation and Robotics, Setubal,
Portugal, 2004.

[7] Y. Tassa, T. Erez, and E. Todorov, “Control-Limited Differential Dynamic
Programming,” in Proceedings of the International Conference on Robotics
and Automation (ICRA), May 2014.

[8] Z. Xie, C. K. Liu, and K. Hauser, “Differential dynamic programming with
nonlinear constraints,” en, in 2017 IEEE International Conference on Robotics
and Automation (ICRA), Singapore, Singapore: IEEE, May 2017, pp. 695–
702.

[9] T. C. Lin and J. S. Arora, “Differential dynamic programming technique for
constrained optimal control,” en, Computational Mechanics, vol. 9, no. 1,
pp. 27–40, Jan. 1991.

[10] M. Giftthaler and J. Buchli, “A Projection Approach to Equality Constrained
Iterative Linear Quadratic Optimal Control,” en, 2017 IEEE-RAS 17th Inter-
national Conference on Humanoid Robotics (Humanoids), pp. 61–66, Nov.
2017.

[11] B. Plancher, Z. Manchester, and S. Kuindersma, “Constrained Unscented
Dynamic Programming,” in Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, 2017.

[12] G. Lantoine and R. P. Russell, “A Hybrid Differential Dynamic Programming
Algorithm for Constrained Optimal Control Problems. Part 1: Theory,” en,
Journal of Optimization Theory and Applications, vol. 154, no. 2, pp. 382–
417, Aug. 2012.

[13] F. Farshidian, M. Neunert, A. W. Winkler, G. Rey, and J. Buchli, “An efficient
optimal planning and control framework for quadrupedal locomotion,” en, in
2017 IEEE International Conference on Robotics and Automation (ICRA),
Singapore, Singapore: IEEE, May 2017, pp. 93–100.

[14] D. P. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods.
Athena Scientific, 1996.

[15] J. Bellantoni and K. Dodge, “A square root formulation of the Kalman-
Schmidt filter,” AIAA journal, vol. 5, no. 7, pp. 1309–1314, 1967.

[16] C. V. Rao, S. J. Wright, and J. B. Rawlings, “Application of Interior-Point
Methods to Model Predictive Control,” en, Journal of Optimization Theory
and Applications, vol. 99, no. 3, pp. 723–757, Dec. 1998.

[17] J. Reeds and L. Shepp, “Optimal paths for a car that goes both forwards and
backwards,” en, Pacific Journal of Mathematics, vol. 145, no. 2, pp. 367–393,
Oct. 1990.


