
VINSat: Solving the Lost-in-Space Problem
with Visual-Inertial Navigation

Kyle McCleary1, Swaminathan Gurumurthy1, Paulo R.M. Fisch1, Saral Tayal1,
Zachary Manchester1, Brandon Lucia1

Abstract— Rapid growth in the number of nanosatellite
deployments has heightened the need for rapid, cost-effective,
and accurate orbit determination (OD). This paper introduces
a solution to this “lost-in-space” problem that we call Visual-
Inertial Navigation for Satellites (VINSat). VINSat performs
OD using data from an inertial measurement unit (IMU) and a
low-cost RGB camera. Machine learning techniques are used to
identify known landmarks in images captured by the spacecraft.
These landmark locations are then combined with IMU data
and a dynamics model in a batch nonlinear least-squares state
estimator to determine the full state of the spacecraft. We
validate VINSat in simulation using real nadir-pointing imagery
and find that 85% of simulated satellites are localized to under
5 km within 6 hours (4 orbits). This performance substantially
surpasses that of ground radar, demonstrating significantly
faster and more precise localization without any reliance on
ground infrastructure.

I. INTRODUCTION

Nanosatellites, including CubeSats, have been deployed
in rapidly increasing numbers in recent years [1]. They
are compact, cost-effective satellites that have opened up
new possibilities for space research, technology testing, and
educational initiatives. Their modular design and affordabil-
ity have democratized access to space, allowing a wider
range of organizations and individuals to participate in space
exploration. They have found applications in diverse areas
such as agriculture [2], land use classification, and disaster
response [3].

Current methods for orbit determination (OD) of
nanosatellites, such as Global Positioning System (GPS)
receivers, radio ranging, and ground-based radar are large,
expensive, imprecise, or time consuming. These limitations
are underscored by data from the European Space Agency
(ESA) that show a considerable fraction of CubeSats remain
unidentified more than 250 days after launch [4].

Nanosatellites would greatly benefit from a solution to
the “lost-in-space” problem, in which a spacecraft needs
to determine its orbit relying solely on onboard computing
and sensing with no prior state knowledge. This paper
presents Visual-Inertial Navigation for Satellites (VINSat),
a comprehensive solution to this problem that can determine
a satellite’s pose with kilometer-level accuracy within a few
hours using only a low-cost camera, Inertial Measurement
Unit (IMU), and on-board processing. For this paper, we
will focus on a nadir-pointing satellite with an assumption
that attitude is known and controlled.

1The authors are with Carnegie Mellon University, Pittsburgh, PA, 15213
USA. Email: {kmcclear, sgurumur, pfisch, stayal,
zmanches, blucia}@andrew.cmu.edu

Fig. 1. VINSat solves the “lost-in-space” problem by determining a satel-
lite’s orbital parameters. It combines low spatial resolution image sensing
and machine-learning inference with batch least-squares estimation and an
accurate dynamics model to achieve kilometer-level position accuracy.

VINSat is a fast, cost-effective method that is compatible
with the size, weight, and power limitations of nanosatellite
hardware. VINSat addresses the challenge of OD by em-
ploying a computer vision model to identify landmarks on
the Earth’s surface and incorporating this information into
a batch least-squares problem [5], [6], aligning the detected
landmarks with their known 3D positions while accounting
for the orbital dynamics between consecutive time steps. Our
main contributions include:

• A complete end-to-end visual-inertial navigation
pipeline for OD onboard nadir-pointing small satellites
using only low-cost camera sensors and onboard
computation.

• A large dataset of real and synthetic Earth imagery
collected from satellites for training vision-based navi-
gation algorithms for space applications.

• A thorough evaluation based on Monte Carlo simulation
of more than 500 low Earth orbit (LEO) deployments
demonstrating that VINSat localizes 85% of satellites
to within 5 km in just 6 hours; substantially faster and
more precise than using ground-based radar.

This paper proceeds as follows: Section II discusses pre-
vious work on OD. Section III describes each subsystem
making up the end-to-end system in detail. Section IV then
presents an evaluation framework and the results obtained

2024 IEEE International Conference on Robotics and Automation (ICRA 2024)
May 13-17, 2024. Yokohama, Japan

979-8-3503-8457-4/24/$31.00 ©2024 IEEE 11774

with the system. Finally, Section V summarizes our conclu-
sions and directions for future work.

II. RELATED WORK

In this section, we provide a brief overview of the existing
approaches to OD.

A. GPS Receivers

GPS receivers are the standard for precise OD [7], [8],
[9], but are ill-suited for nanosatellites, such as CubeSats or
PocketQubes [10], [11], due to their size and cost. A space-
rated version of the NovAtel OEM719 GPS receiver [12]
is commonly used in CubeSats due to its relatively small
size, low cost, and ability to operate at the extreme speeds
(roughly 7.5 km/s) of a satellite in LEO. These receivers cost
around $5000. Modules that use these receivers to perform
OD on-orbit cost even more. One such system, [13], uses
a NovAtel OEM719 for position data to perform OD and
costs $10k-$19k. Standard GPS receivers for use on Earth are
restricted to speeds less than 515 m/s and altitudes less than
18 km due to limits placed by the Coordinating Committee
for Multilateral Export Controls (CoCom), its successor the
Wassenaar Arrangement, and the Missile Technology Control
Regime (MTCR) [14].

B. Ground Radar

An alternative to GPS is radio ranging from ground
stations or radar [8], [15], which can take weeks to months
to determine a satellites orbit after launch, and may even
fail to identify a satellite in a cluster [15]. Radio ranging
from ground stations requires significant infrastructure, and
positions from radar typically have errors of 20 km [16].
Table I compares the existing commonly used methods to
our approach.

TABLE I
COMPARISON OF ORBIT DETERMINATION (OD) METHODS

Property/Method GPS OD Ground Radar Visual OD
Largest Dimension 96 mm [13] Off Satellite < 50 mm

Mass 109 g [13] Off Satellite < 15 g
Power 1-2 W [12] Off Satellite < 5 W
Cost ∼ $10 k [13] $0− 10 k < $100

OD Time Secs [17] Wks-Mos [18] Secs-Hrs
Precision 1.5 m [17] ∼ 10 km [16] ∼ 1 km

C. Visual Methods

Prior work on visual satellite navigation such as [19]
and [20], obtains coarse satellite position estimates using
only visual inputs from cameras and classical computer
vision keypoint-matching techniques, such as SIFT [21],
FLANN [22] and RANSAC [23]. These approaches have
several limitations, including lack of robustness to clouds,
the use of pre-extracted coastlines for localization, and
localization errors of a few degrees of latitude and longitude.

III. SYSTEM DESIGN

This section describes the architecture of the VINSat
system. We provide a high-level overview, followed by a
detailed description of each subsystem.

A. System Overview

The VINSat system, as depicted in Fig. 2, has two main
components: an image-processing subsystem responsible for
extracting Earth landmarks from captured imagery and a
batch least-squares optimization solver that calculates the
satellite’s orbit based on these landmarks.

Initially, images are captured by a camera at a resolution of
4608×2592 pixels. Identifying landmark correspondences in
the captured images is challenging, particularly without prior
knowledge of the satellite’s pose, and is further compounded
by the computational constraints imposed by a nanosatellite’s
limited power and processing capacity.

VINSat geolocates captured imagery by matching image
features to landmarks on Earth. First, the system identifies
the coarse geographic region over which the satellite is
orbiting. Second, it matches ground landmarks with known
locations to pixels in the image. VINSat performs region
identification using a Region Classification (RC) Network.
An RC network is a deep neural network that is trained
to process each captured image at a downscaled resolution
of 640 × 360 pixels to identify the region of Earth that
the image depicts. Additionally, the RC network eliminates
uninteresting images, such as those containing only clouds or
ocean. These outputs are subsequently used to route the full-
resolution images to specialized landmark detection (LD)
deep neural networks, each trained for a specific region. The
LD networks produce a mapping from pixel coordinates to
landmarks with known location coordinates on Earth. These
coordinates are the input to a batch optimization solver that
produces an estimate of the satellite’s orbit. Further details
of each subsystem are elaborated upon in the sections that
follow.

B. Region Classification

The RC network takes an image as input and produces
the regions that the image most likely depicts as output. The
purpose of the RC network is to narrow the scope of the
later search for landmarks to a small set of regions on Earth,
rather than all of Earth.

The RC network’s output classes are region identifiers
corresponding to regions defined in the Military Grid Refer-
ence System (MGRS), a NATO international standard for
locating points on the Earth. The largest regions of the
MGRS divide the Earth into a grid delineated by 22 North-
South regions and 60 East-West regions. Each region is
typically six degrees of longitude by eight degrees of latitude,
with some variation near the poles.

The RC network does not consider all regions in the
MGRS, instead focusing on the most salient 16 regions.
VINSat computes the saliency of a region by computing
the cross-correlation of the NASA Blue Marble imagery
data available for that region. Fig. 3 shows a map of the

11775

Fig. 2. End-to-end block diagram of VINSat pipeline. The vision block is highlighted in blue and the state estimation block is highlighted in green.
Captured images are first classified into regions of interest (ROIs). These ROIs are used to feed the captured image to the appropriate landmark detection
(LD) networks. The identified landmarks, their positions in the image, and their associated confidences are passed to the batch least-squares optimizer. The
batch least-squares optimizer uses the information to estimate the orbit of the satellite.

Fig. 3. Saliency map from which regions of interest were selected. Brighter
areas exhibit high saliency. These areas were used to select regions of
interest for the region classification and landmark detection networks.

computed saliency of points on Earth. Based on a Monte
Carlo simulation of 1000 typical random nadir-pointing LEO
satellites, the average time for a CubeSat to pass over one
of these regions is about 63 minutes.

The RC network is based on the EfficientNet-B0 archi-
tecture, a highly efficient neural-network model suitable for
online inference on each captured image. To adapt it for our
setting, we replace its output layer with a sigmoid activation
function for region detection.

C. Landmark Detection

Each LD network takes an image as input and produces
a set of landmarks contained within the image and their
pixel locations as output. VINSat selects landmarks based on
saliency of features within a region of interest (ROI). We use
OpenCV’s saliency API on NASA Blue Marble image data
for each of our 16 regions of interest. We sequentially select
the top 500 most salient boxes in each region of varying
sizes between 5 km and 50 km. An example of this process
is shown for boxes of 25× 25 km in Fig. 4.

VINSat’s LD network is based on the YOLOv8s object
detection model, trained to produce bounding boxes around
landmarks within an image. We convert landmarks and
detection bounding boxes to points (which is needed for OD)
by using their center point.

Fig. 4. Landmarks from the saliency map of an individual region. Each
yellow rectangle is a 25 × 25 km bounding box of a salient landmark.
The saliency-based landmark-selection process determines the landmark
detection network’s classes for each region. 500 landmarks are selected
for each region of interest.

D. Orbit Determination

The primary objective of the OD pipeline is to use mea-
surements from the image processing subsystem to generate
accurate estimates of the satellite’s state, which includes
its position r, and velocity v. The estimation problem is
formulated as a batch least-squares optimization problem [5],
[6], aiming to minimize the residuals arising from satellite
dynamics across consecutive time steps and the discrepancies
between projected and observed landmarks on the camera
frame.

The inputs to the system are the 3D locations of
the detected landmarks in Earth-centered inertial (ECI)
coordinates p = (x, y, z) and the pixel position of the
corresponding detections in the image are w = (u, v).

The dynamics error term, ψt, is a summation of two
key components: squared errors on the predicted and actual
position and velocity. The predicted position (̂r) and velocity
(v̂) are obtained by rolling out the orbital dynamics from the
previous state.

ψt = ∥r̂(rt−1,vt−1)− rt∥2Qr
+ ∥v̂(rt−1,vt−1)− vt∥2Qv

,

(1)

where Qr and Qv are weight matrices corresponding.
The second major component in the batch optimization

problem is the camera projection error term, ϕm. Given the

11776

satellite’s estimated position r and assuming nadir orientation
qn, along with the camera matrix K, we can project 3D
landmarks p to their expected pixel positions ŵ in the
camera frame. The error term ϕm quantifies the discrepancy
between these predicted pixel positions and the actually
observed positions w:

ϕm = ∥ŵ(rm,K,pm)−wm∥2R, (2)

where R is a weight matrix. One challenge with this error
term is its sensitivity to outliers, particularly when the
landmark measurements are noisy. Thus, instead of using
a constant R, we compute it as proposed in [24] to obtain
an adaptive kernel :

Rk = c2
(
(ϵpk/c)

2

|α− 2|
+ 1

)1−α
2

, (3)

where Rk is the k-th diagonal term in R, ϵpk is the corre-
sponding residual term, and α and c are hyperparameters
that control the shape and scale of the kernel, respectively.
We set c to the median of the residuals to automatically
adapt the scale of the kernel to the specific problem. We
compute α = max(2 − 2 ∗ i/5,−1), as a function of the
optimizer iteration count, i. α = 2 corresponds to a least-
squares kernel, and lower α′s correspond to increasingly
more robust kernels. Setting α = max(2− 2i/5,−1) allows
us to compute an initial estimate using all points and then
progressively make the estimates more robust to outliers.

Algorithm 1 Batch Least-Squares Optimization
LSQ(rm,K,pm, rt−1,vt−1,∆t, rt,vt)

for i in num iters do
ŵm, Jg,m = CameraProjection(rm,K,pm)
r̂t, Jd,t, Ht = Dynamics(rt−1,vt−1)
Compute ψt, ϕm using Eq 1, 2.
v̂:, r̂: = LM Optimizer(Jg,:, Jd,:, ψ:, ϕ:)

end for
return ŵ, r̂

Finally, we aggregate these costs across detections and
time-steps and solve a joint optimization problem as follows:

min
(r,v)1:N

∑
m

ϕm + λ
∑
t

ψt (4)

We solve this optimization problem over all the poses jointly
using a Levenberg-Marquardt (LM) method [25]. We provide
an overview of the system for solving the batch least-squares
problem in Algorithm 1.

IV. EVALUATION

The purpose of this evaluation is to demonstrate the ability
of the VINSat system to sufficiently perform OD from typical
CubeSat orbits in a reasonable time frame. This section
details evaluations of the individual components of VINSat,
as well as the end-to-end system. Our simulation results show
that VINSat achieves kilometer-level OD in just a few orbits.

To evaluate VINSat, we require a large dataset of images
captured from a low-cost and wide field of view camera

on a satellite orbiting Earth, as well as images containing
clouds, which are typically discarded by satellite imagery
distributors. Unfortunately, such a dataset is not currently
available. Consequently, we divide our evaluation into three
main components:

1) Cross-Dataset Generalization: We test generalization
to different cameras and data sources by training on
Sentinel 2 imagery and testing on Landsat imagery.

2) Ablations and Sensitivity Analysis: We perform ab-
lation experiments to understand the importance of
various design decisions on the batch optimizer.

3) Simulation: We simulate satellites in random polar and
ISS-like orbits to evaluate the end-to-end pipeline.

A. Cross-Dataset Generalization

We test cross-dataset generalization by training on Sen-
tinel 2 imagery and testing on Landsat imagery. We do
this by first training on 2000 randomly mosaiced Sentinel-2
images for each of the 16 regions. The images are made
from randomly selecting points in the region of interest,
buffering around the point, mosaicing random Sentinel 2
images captured between 2020 and 2022, and exporting the
image at a scale of 150 meters per pixel, similar to our
reference camera. An example of one of these images is
shown on the left of Fig. 5. We then validate the performance
of each network on 500 Sentinel 2 images made the same
way, but from data captured between 2018 and 2019. 250
raw Landsat 8 and 250 raw Landsat 9 scenes captured during
2023 are used for testing. An example Landsat 8 scene can be
seen on the right of Fig. 5. All images were downloaded from
Google Earth Engine [26] in GeoTIFF format containing
affine transformations of pixel points to ground points to
maintain accurate ground truth when labeling landmarks.

For clarity the training, validation, and test datasets for
each region are listed again below:

• Training: 2000 Sentinel 2 mosaics made from imagery
captured between 2020 and 2022.

• Validation: 500 Sentinel 2 mosaics made from imagery
captured between 2018 and 2020.

• Test: 250 Landsat 8 and 250 Landsat 9 images captured
during 2023.
a) Region Classification Network: The RC network

dataset is annotated by projecting landmarks onto the cam-
era’s image plane and identifying regions with visible land-
marks. Each image is assigned a 16-value multi-hot label
corresponding to the regions containing visible landmarks in
the image. The RC network is validated by measuring the
performance of the network on the validation dataset using
network precision, recall, and F1 score.

The RC network achieves an overall accuracy of 99.2%
on the validation set. The mean precision for all classes is
0.95, the mean recall for all classes is 0.97, and the mean
F1 score for all classes is 0.96. These values demonstrate
that the appropriate regions have high likelihood of being
recognized in an image and passed to the corresponding
landmark detection networks.

11777

(a) Mosaiced imagery from Sentinel
satellite

(b) Imagery from Landsat satellite

Fig. 5. Comparison of Sentinel and Landsat imagery. The many subtle
differences between imagery sources, lighting conditions, and seasons lead
to a challenging landmark detection problem.

b) Landmark Detection Networks: Each LD network
dataset is annotated by projecting landmarks onto the cam-
era’s image plane and identifying the pixel locations of
each landmark. We locate the center point and corners of
each landmark in the image and draw a bounding box
around it, ensuring that the center point of the label aligns
with the center point of the landmark. Each LD network
is evaluated by measuring the performance of the network
on the test dataset by measuring mean pixel error of the
center points of detected landmarks at varying confidence
thresholds. Additionally, we measure the ratio of detections
included at varying confidence thresholds.

We report results for the mean pixel error and ratio of
points encompassed across all LD networks for confidence
thresholds of 0.7, 0.8, and 0.9 in Table II. From the table
it is clear that a confidence threshold of 0.9 is too high as
it includes a very small sample of the detections while not
improving mean pixel error. We choose 0.8 as a confidence
threshold as the majority of detections are included, but the
mean error is improved over a threshold of 0.7.

These results suggest that both networks exhibit robust
generalization to substantial variations in clouds, seasons,
and image characteristics.

TABLE II
LD NETWORKS MEAN PIXEL ERROR AND RATIO OF INCLUDED POINTS

AT VARYING CONFIDENCE THRESHOLDS.

0.7 0.8 0.9
Mean Error (pixels) 1.79 1.66 1.87

Ratio of Included Points 0.86 0.65 0.03

B. Ablations and Sensitivity Analysis

We perform ablation experiments to understand the im-
portance of various design decisions.

1) Effect of the orbital dynamics costs: We conducted
tests to evaluate the influence of orbital dynamics terms on
the performance of the batch optimizer using the end-to-end
pipeline validation dataset and the detections from the image
pipeline. We observe that, in the absence of the dynamics
terms, the resulting trajectories have an RMS position error

of 6.11 ± 3.32 km as opposed to 1.60 ± 0.87 km with the
dynamics terms. Our observations highlight the critical role
played by the dynamics terms.

2) Effect of outlier rejection: While our RC and LD
networks excel at identifying landmarks on the Earth’s
surface, the presence of outliers in the detections significantly
hampers OD. We use two primary methods for outlier rejec-
tion: confidence thresholding to remove detections below a
specific confidence threshold and an adaptive cost kernel.

Table III presents the outcomes of confidence thresholding
for ten randomly sampled LEO orbits, indicating that optimal
results are achieved around a threshold of 0.8. This threshold
strikes a balance between having enough data points for con-
vergence while effectively controlling the impact of outliers.
Higher confidence thresholds result in poorer performance
due to data scarcity, whereas lower thresholds lead to an
excess of outliers that disrupt convergence.

We also test our method without the adaptive kernel,
replacing it with a simple L2 loss instead. This results in
an RMS position error of 2.39 ± 1.44 km, which is much
higher than our original results. We observe that the outlier
rejection done by the adaptive kernel is very effective and
contributes to significant performance improvements.

TABLE III
RMS OD ERROR PERFORMANCE AND CONFIDENCE THRESHOLDS

RMS OD Error/Confidence 0.3 0.6 0.8 0.85
Average (km) 2.75 2.14 1.60 2.06
Median (km) 2.50 1.69 1.53 1.72

Std. Dev. (km) 1.71 1.18 0.87 1.30

We observe that the performance of the batch least-
squares optimizer improves monotonically with increasing
density of detections at the same noise level. We test this by
downsampling detections from a three hour orbit by varying
it from 10% of detections per frame to 80% of the total
detections per frame with the same noise level. An increase
in the measurement density leads to a natural decrease in
error. However, as density continues to rise, the error asymp-
totically approaches zero, resulting in diminishing returns
after 60% detections per frame. Table IV shows the effect of
detection density for 10 randomly sampled LEO orbits.

TABLE IV
RMS OD ERROR PERFORMANCE AND DETECTION DENSITY

RMS OD Error/Detection Density 0.1 0.2 0.4 0.8
Average (km) 6.67 6.92 2.32 1.80
Median (km) 6.26 3.64 1.68 1.69

Std. Dev. (km) 4.93 8.31 1.28 0.65

3) Effect of detection signal noise: In Table V, we illus-
trate the impact of pixel error on OD error. To simulate error
originating from the detection network, we introduce white
Gaussian noise to the camera pixel values of ten randomly
sampled LEO orbits. The noise’s standard deviation ranges
from one to eight pixels. During these experiments, the OD
error spans from 0.2 km to 1.35 km.

11778

Fig. 6. View of a simulation image. Predicted landmarks are green, ground
truth landmarks are red, and a blue line connects each associated predicted
landmark and ground truth landmark. The landmark detection networks are
capable of detecting landmarks with minimal error in non-cloud obscured
portions of images.

TABLE V
RMS OD ERROR PERFORMANCE FOR DIFFERENT PIXEL WHITE NOISE

STANDARD DEVIATION

RMS OD Error/Pixel noise σ 1px 2px 4px 8px
Average (km) 0.20 0.38 0.64 1.35
Median (km) 0.09 0.20 0.37 0.75

Std. Dev. (km) 0.17 0.32 0.49 1.11

C. Simulation

The simulation environment works by first generating a
random near-polar or ISS-like orbit. This orbit is propagated
at 1 Hz and the satellite pose is used at each timestep to
determine the view of the Earth based on the reference
camera intrinsics. Random Landsat 8 imagery is mosaiced
to create an image in the view of the camera on the satellite.
Images are captured at a rate of 1

5 Hz. The image is then
processed through the pipeline and detections are recorded.
The detections are passed to the batch optimizer and the
satellite’s position is estimated.

We find that during simulation the LD networks sometimes
struggle amidst significant cloud cover, but with the iterative
elimination of “bad” classes (i.e. those with consistently high
error) the LD networks consistently achieve detections with
pixel error less than 10 pixels (1.5 km), often achieving low-
single-digit pixel error. Occasional outliers with significant
pixel error sometimes cause difficulty for the batch estimator.
These outliers can be reduced by improving training of the
LD networks and having more robust outlier detection.

An example view with detections and errors is shown in
Fig. 6. Over 500 simulated random satellites were used to
generate the cumulative distribution function-like plot shown
in Fig. 7. The plot demonstrates that 85% of simulated nadir-
pointing satellites reached a position error of less than 5 km
in under four orbits. For satellites moving at 7.5 km/s, that
corresponds to less than one second of position error.

V. CONCLUSIONS AND FUTURE WORK

In this work, we introduce VINSat, an OD method that
is, to the best of the authors’ knowledge, the first fully
autonomous, vision-based solution to the “lost-in-space”

Fig. 7. Cumulative distribution of satellite position error vs. time. The
y-axis corresponds to the fraction of total simulated satellites and the x-axis
corresponds to the time of the simulation in minutes. Each separate line
corresponds to a localization threshold between one and five km. The time
stops at six hours, equivalent to roughly four full orbits around the Earth.
The dashed vertical lines represent 90 minute intervals, or around 1 orbit.
After over 500 simulations, 85% of satellites were localized with less than
5 km error.

problem. Notably, our approach eliminates the need for ex-
pensive and bulky GPS receivers or time-consuming ground-
based radar methods. We have also developed an evaluation
pipeline and datasets using openly accessible tools, which we
have released alongside this paper. We hope that this spurs
further research and development in this important emerging
field.

While VINSat represents an important first step toward
addressing the “lost-in-space” problem, we believe there
exists significant scope for improvement and future work.
The first, and possibly easiest, improvement is to simply
increase the number of regions of interest. Furthermore,
the batch least-squares problem only solves for the satellite
position in the current setup. A natural next step would be to
modify the problem to jointly solve for the position and the
attitude of the satellite. Methodologically, both the LD and
RC networks could benefit from architectural modifications
that better utilize the sequential nature of the pipeline. In
terms of evaluations, the end-to-end VINSat setup needs
to be tested on real-world data with more refined sensor
models that consider imperfections, such as image blur and
IMU bias. Due to the lack of open datasets, this has been
challenging. A natural next step from there would be to test
the pipeline on hardware and finally on-orbit.

VI. ACKNOWLEDGMENTS

This work was funded in part by NSF CPS Frontier
Award #2111751 and a grant from the Sloan Foundation.
Additionally, the authors would like to thank all those that
helped in the course of this research, including CMU’s
Design-Build-Fly Laboratory course for their refinement of
concepts in this paper.

REFERENCES

[1] E. Kulu, “Nanosatellite launch forecasts-track record and latest pre-
diction,” 2022.

11779

[2] J. You, X. Li, M. Low, D. Lobell, and S. Ermon, “Deep gaussian
process for crop yield prediction based on remote sensing data,”
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31,
no. 1, Feb. 2017.

[3] J. Shao, L. Tang, M. Liu, G. Shao, L. Sun, and Q. Qiu, “BDD-Net: A
General Protocol for Mapping Buildings Damaged by a Wide Range
of Disasters Based on Satellite Imagery,” Remote Sensing, vol. 12,
no. 10, p. 1670, Jan. 2020.

[4] F. Letizia, “Results from esa’s annual space environment report, july
2019, presented as a key-note address at the advanced maui optical
and space surveillance technologies conference, held in wailea, maui,
hawaii, september 2019. used by permission from esa,” 2019.

[5] D. G. Robertson and J. H. Lee, “A least squares formulation for state
estimation,” Journal of process control, vol. 5, no. 4, pp. 291–299,
1995.

[6] D. Simon, Optimal state estimation: Kalman, H infinity, and nonlinear
approaches. John Wiley & Sons, 2006.

[7] J. van den IJssel, J. Encarnação, E. Doornbos, and P. Visser, “Precise
science orbits for the Swarm satellite constellation,” Advances in Space
Research, vol. 56, no. 6, pp. 1042–1055, 2015.

[8] M. A. Skinner, M. Coletti, M. C. Voss, T. Svitek, J. C. Lee, K. Auman,
H. Patel, and E. J. Moyer, “Mitigating CubeSat confusion: Results of
in-flight technical demonstrations of candidate tracking and identifica-
tion technologies,” Journal of Space Safety Engineering, vol. 9, no. 3,
pp. 403–409, 2022.

[9] Z. Kang, B. Tapley, S. Bettadpur, J. Ries, P. Nagel, and R. Pastor,
“Precise orbit determination for the grace mission using only gps data,”
Journal of Geodesy, vol. 80, pp. 322–331, 2006.

[10] B. Denby, E. Ruppel, V. Singh, S. Che, C. Taylor, F. Zaidi, S. Kumar,
Z. Manchester, and B. Lucia, “Tartan artibeus: A batteryless, compu-
tational satellite research platform,” 2022.

[11] S. Radu, M. S. Uludag, S. Speretta, J. Bouwmeester, A. Menicucci,
A. Cervone, A. Dunn, and T. Walkinshaw, “PocketQube Standard,”
2018.

[12] “OEM719.” [Online]. Available:
https://novatel.com/products/receivers/gnss-gps-receiver-
boards/oem719

[13] “GNSS Receiver Module (GPSRM 1) Kit,”
http://www.pumpkinspace.com/store/.

[14] “MTCR Annex - MTCR,” https://www.mtcr.info/en/mtcr-annex.
[15] S. Caldwell, “12.0 Identification and Tracking Systems,”

http://www.nasa.gov/smallsat-institute/sst-soa/identification-and-
tracking-systems, Oct. 2021.

[16] “Planet Labs public orbital ephemerides,” https://ephemerides.planet-
labs.com/.

[17] Y. Yang, X. Yue, and A. G. Dempster, “GPS-based onboard real-time
orbit determination for leo satellites using consider Kalman filter,”
IEEE Transactions on Aerospace and Electronic Systems, vol. 52,
no. 2, pp. 769–777, Apr. 2016, conference Name: IEEE Transactions
on Aerospace and Electronic Systems.

[18] “Space environment statistics.” [Online]. Available:
https://sdup.esoc.esa.int/discosweb/statistics/

[19] M. Straub and J. A. Christian, “Autonomous optical navigation for
earth-observing satellites using coastline matching,” in AIAA Guid-
ance, Navigation, and Control Conference, 2015, p. 1334.

[20] L. M. Shockley and R. A. Bettinger, “Real-time aerospace vehi-
cle position estimation using terrestrial illumination matching,” in
2021 IEEE 8th International Workshop on Metrology for AeroSpace
(MetroAeroSpace), 2021, pp. 505–509.

[21] D. G. Lowe, “Object recognition from local scale-invariant features,”
in Proceedings of the seventh IEEE international conference on
computer vision, vol. 2. Ieee, 1999, pp. 1150–1157.

[22] M. Muja and D. G. Lowe, “Scalable nearest neighbor algorithms for
high dimensional data,” IEEE transactions on pattern analysis and
machine intelligence, vol. 36, no. 11, pp. 2227–2240, 2014.

[23] M. A. Fischler and R. C. Bolles, “Random sample consensus: a
paradigm for model fitting with applications to image analysis and
automated cartography,” Communications of the ACM, vol. 24, no. 6,
pp. 381–395, 1981.

[24] J. T. Barron, “A general and adaptive robust loss function,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019, pp. 4331–4339.

[25] K. Levenberg, “A method for the solution of certain non-linear
problems in least squares,” Quarterly of applied mathematics, vol. 2,
no. 2, pp. 164–168, 1944.

[26] N. Gorelick, M. Hancher, M. Dixon, S. Ilyushchenko, D. Thau, and
R. Moore, “Google Earth Engine: Planetary-scale geospatial analysis
for everyone,” Remote Sensing of Environment, 2017.

11780

