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MODEL-PREDICTIVE ATTITUDE CONTROL FOR FLEXIBLE
SPACECRAFT DURING THRUSTER FIRINGS

Kevin Tracy∗, Zachary Manchester†

We present a model-predictive control technique for attitude control of flexible
spacecraft during thruster firings. Due to the flexibility of the spacecraft, con-
trol laws designed under the rigid-body assumption can perform poorly during
thruster-induced deflections. A model-predictive controller, in contrast, can lever-
age a greater understanding of the flexible-body dynamics and actuator constraints,
and can achieve significantly better pointing performance than traditional control
laws. To demonstrate the effectiveness of this control strategy, we compare the
MPC controller with an LQR feedback controller during a thruster firing in the
presence of noise and model uncertainty. The MPC controller performs signifi-
cantly better, enabling lighter and more flexible spacecraft designs.

INTRODUCTION

Spacecraft engineers must often trade between mass and structural stiffness, with the stiffness
of some appendages, like antennas, being critical to mission success. For appendages like probes
and solar arrays, moderate flexibility can be afforded because payload performance isn’t directly af-
fected. In this case, the need for structural stiffness is driven by attitude control requirements. Con-
trol of rigid spacecraft is well-understood, and has been thoroughly studied over many decades.1, 2

The goal of this paper is to describe a method where flexible spacecraft can be controlled with simi-
lar attitude control performance to that of a rigid body, enabling lighter and less expensive spacecraft
designs.

During nominal pointing operations, a spacecraft with flexible appendages can operate without
much concern for the flexible modes. In the presence of a thruster firing, however, the flexible
behavior is excited by both translational acceleration and torque resulting from thruster misalign-
ments, plume impingements, and uncertainty about the center of mass. In some cases, the flexible
dynamics of the spacecraft appendages can be destabilizing if the attitude control system is not
designed to properly account for it. But, more often, it simply results in large pointing errors.

The approaches that have been explored to deal with the control of flexible spacecraft fall into
three different categories: The first approach is to perform input shaping on the thruster response,
avoiding excitation of certain modes in the structure. Banerjee3 explored this approach as it related
to actively damping out the flexible vibrations after an orbit adjustment. A second approach is to
filter the sensor measurements with prior knowledge of the flexible behavior. Wie4 employed this
approach for the Intelsat V series of geostationary spacecraft during station-keeping maneuvers.
Finally, the third approach is to design feedback controllers that exploit some understanding of the
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Figure 1. Attitude pointing error distributions are shown for LQR and MPC flexible
body spacecraft attitude control for 1000 Monte-Carlo trials. The ranges shown for
each control strategy encompass 3 standard deviations above and below the respective
mean performances. Perturbations in pointing are caused by a thruster firing at 7.5
seconds.

flexible dynamics to decrease the possibility of destabilizing the spacecraft.5 All three of these
approaches have been employed with success, but can only handle limited flexibility, and involve
highly non-trivial design and tuning for each spacecraft.

Model-Predictive Control (MPC) is a strong candidate for flexible body spacecraft control be-
cause it can reason about the flexible dynamics of the spacecraft, respect actuator constraints, and
plan ahead for thruster firings. The cost of MPC comes from a computational perspective, where
traditionally it was difficult to run MPC onboard a spacecraft with modest computational resources.
Convex optimization solvers, specifically Quadratic Program (QP) solvers, have now progressed
to the point where MPC problems can be solved in less than a millisecond on modest processors,
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therefore placing a negligible burden on flight software load.

This paper presents a fast and efficient MPC formulation of the flexible-spacecraft attitude control
problem that offers a significant improvement in both performance and robustness over traditional
feedback controllers. The MPC framework that is described is generic to any flexible spacecraft, ro-
bust to model uncertainty, and is solved extremely quickly by a QP solver. The paper proceeds with
sections on the full nonlinear dynamics of a flexible spacecraft, a simplified linearized dynamics
model, an MPC formulation for the linearized system, and, finally, simulation results.

DYNAMICS

Many different dynamics models have been employed to simulate flexible-body behavior of
spacecraft. Many of them employ Kane’s method,6–8 as well as more recent advancements from
Banerjee.9 For this paper, a test spacecraft based on the JPL Thermoelectric Outer Planet Spacecraft
(TOPS) concept is used as the flexible spacecraft.10 The flexible dynamics are described using a
truncated modal coordinate method.11 This model leverages the mode shapes and frequencies from
a finite-element analysis to describe momentum coupling matrices that relate torques and forces
to modal excitation. The model is truncated to some order j, such that only the first j modes are
incorporated in the dynamics. The state for the dynamics simulation is as follows,

x = [pT , ωT , ηT , η̇T , rT ]T , (1)

where p is the 3-dimensional vector of modified Rodrigues parameters (MRP)1, 12 that represents
the spacecraft’s attitude, ω is the angular velocity of the central body expressed in the body frame,
η ∈ Rj is a vector of modal-coordinate displacements, η̇ ∈ Rj is a vector of modal-coordinate
velocities, and r ∈ Rm is the reaction wheel rotor speeds. The control input u ∈ Rm, is the angular
acceleration applied to the reaction wheels. The nonlinear dynamics expressed in the body-fixed
frame are,

Jω̇ + ω × [Jω +Bscr +GT η̇] +GT η̈ = τd −Bscu, (2)

η̈ + Cη̇ +Kη + Φf = −Gω̇, (3)

ṙ = u, (4)

where J ∈ R3×3 is the spacecraft central body inertia matrix, Bsc ∈ R3×m is the reaction wheel
Jacobian, G ∈ Rj×3 is the flexible angular momentum coupling matrix, Φ ∈ Rj×3 is the flexible
linear momentum coupling matrix, τd are the external disturbance torques, C ∈ Rj×j is the modal
damping matrix, K ∈ Rj×j is the modal stiffness matrix, and f is the translational acceleration.
The kinematics of the MRP are as follows:1

ṗ =
1 + pT p

4

(
I3 + 2

[p×]2 + [p×]

(1 + pT p)

)
ω. (5)

An MRP has been chosen to parameterize the attitude instead of a quaternion because it will lin-
earize well in the absence of the unit norm constraint, and the singularity present in the MRP will not
be reached in stationary attitude control scenarios.1 Together, these represent a system of 6+m+2j
first-order ODE’s, where j is the number of flexible modes expressed in the dynamics. These equa-
tions must be rearranged in order to represent the state derivatives explicitly. Equation (3) can be
substituted into equation (2) resulting in the following expression for angular acceleration:

ω̇ = [J −GTG]−1[τd −Bscu− ω × h+GT (Cη̇ +Kη + Φf) +GT (τd +GTΦf) + Φf ], (6)
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where h = [Jω + Bscr +GT η̇] is the total angular momentum of the spacecraft. Equation (6) can
now be plugged back into equation (3) giving the expression for the modal coordinate acceleration
vector,

η̈ = −
[
(C +GTGTC)η̇ + (K +GTGTK)η +GTτd −GTBscu+GTGTΦf + Φf

]
, (7)

where T = [J −GTG]−1. Equations (4) - (7) will be used to simulate the true nonlinear dynamics
of the flexible spacecraft.

Linearized Dynamics

The dynamics can be linearized about the desired spacecraft pointing state with zero angular
velocity and no modal displacement. The spacecraft reaction wheels will no longer be an active
state in the dynamics, but the nominal rotor speed, r0, at time of linearization, will be. The resulting
state vector is,

x =
[
pT , ωT , ηT , η̇T

]T
, (8)

which has dimension 6 + 2j where j is the number of modes represented in the model. The system
will now be linearized by taking a first order Taylor series about the steady state point:

xss = 06+2j , (9)

uss = 03. (10)

To perform the linearization, equations (4) - (7) are differentiated with respect to the state and
control variables at the steady state values, resulting in the following Jacobian with respect to state,

A =
∂ẋ

∂x

∣∣∣∣
xss,uss

=


03×3

1
4 I3 03×j 03×j

03×3 [(Bscr0)×] TGTK TGTC
0j×3 0j×3 0j×j Ij
0j×3 0j×3 [−K −GTGTK] [−C −GTGTC].

 , (11)

as well as the following input Jacobian:

B =
∂ẋ

∂u

∣∣∣∣
xss,uss

=


03×3
−TBsc

0j×3
GTBsc

 . (12)

The linearized dynamics also include the following affine term to account for thruster-induced forc-
ing:

d(τ, f) = ẋss(τ, f) =


03×1

Tτd + TGTΦf
0j×1

−GTτd −GTGTΦf − Φf

 . (13)

The final linearized equations of motion can be written in state space form as follows:
ṗ
ω̇
η̇
η̈

 = A


p
ω
η
η̇

+Bu+ d(τ, f). (14)
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Note that there are three important differences between the linearized model and the true nonlinear
model: The first is the removal of the rotor velocities from the state, the second is the removal of
the gyroscopic coupling term, and the third is the approximation of the attitude kinematics with
ṗ = (1/4)ω. All three of these approximations will remain valid while the spacecraft is close to the
nominal attitude and the angular velocities remain small.

Discretization of Linearized Dynamics

In order to discretize the continuous system (14), the matrix exponential will be used. For a
generic homogeneous linear ODE of the form ẋ = Ax, the solution for x after a time δt, can be
expressed using the matrix exponential and the initial condition:13, 14

ẋ = Ax, (15)

x(t0 + δt) = exp(A · δt)x(t0). (16)

For a forced affine ODE, where the control input and affine forcing term are assumed constant over
a time step, the state can simply be augmented with these terms,ẋu̇

ḋ

 =

Ax+Bu+ d
0
0

 =

A B In
0 0 0
0 0 0

xu
d

 , (17)

and this system can be discretized with a sample time of δt in the same way as (16)xt+1

ut+1

dt+1

 = exp
(A B In

0 0 0
0 0 0

 · δt)
xtut
dt

 . (18)

Finally, we obtain in the following difference equation,

xt+1 = Adxt +Bdut +Dddt, (19)

where the transition matrices come from the matrix exponential,Ad Bd Dd

0 I 0
0 0 I

 = exp
(A B In

0 0 0
0 0 0

 · δt). (20)

MODEL-PREDICTIVE CONTROL

A Model-Predictive Control (MPC) approach is ideal for spacecraft with increased flexibility
because it can plan for thruster firings, account for constraints on the state or control variables,
and reason about the flexible body dynamics. This is done by developing feed-forward control
plans for a finite horizon, executing the first control in the series, and re-solving the problem with
the new measured state as the initial condition. This attitude control problem is formulated as an
optimization problem where a cost function is minimized subject to dynamics, actuator, and state,
constraints. More specifically, by formulating this problem as a convex optimization problem, it can
be solved with speed and reliability.
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Formulation as a Quadratic Program

This MPC problem will be formulated as a convex QP, a specific type of convex optimization
problem with many fast and robust solvers available. The convexity of the MPC problem guarantees
that any locally optimal solution is globally optimal,15 without any need for an initial guess. For
larger problems and those with poor scaling, numerical issues can occur, but this specific problem
will be posed such that these issues are avoided.

The first step to converting this problem to a QP is formulating quadratic stage and terminal cost
functions,

`k(xk, uk) =
1

2
(xk − xg)TQ(xk − xg) +

1

2
uTkRuk, (21)

`N (xN ) =
1

2
(xN − xg)TQN (xN − xg), (22)

where xg is the goal state. The system dynamics are captured in a set of linear equality constraints
using equation (19). Lastly, there are box constraints on the control and state variables. Together,
this can be formulated as a convex QP:15

min
x1:N , u0:N−1

1

2
xTNQNxN − xTgQNxN +

N∑
k=0

(
1

2
xTkQxk − xTgQxk +

1

2
uTkRuk

)
s.t. xk+1 = Adxk +Bduk +Ddd, k = 0, . . . , N − 1,

ulower ≤ uk ≤ uupper, k = 0, . . . , N − 1,

xlower ≤ xk ≤ xupper, k = 0, . . . , N.

(23)

Problem (23) can be reformulated as a standard-form QP for use with the Operator Splitting Quadratic
Program (OSQP) solver.16 OSQP is a fast, ADMM-based,17 QP solver that has extensive warm-
starting capabilities, making it particularly well suited for MPC. Direct transcription18 will be used,
with both the state and control inputs concatenated into a single vector of decision variables for an
N -step horizon problem,

x =
[
xT0 , xT1 , xT2 , . . . , xN

T , uT0 , uT1 , uT2 , . . . , uTN−1
]T
. (24)

Problem (23) can now be cast as a QP in standard form,

minx
1

2
xTPx + qT x

s.t. Fx = w,

lb ≤ x ≤ ub,

(25)

where the problem matrices P, q, F, w, lb, and ub are defined below. First, the quadratic cost term
P is constructed such that Q applies to x0:N−1, QN applies to xN , and R applies to u0:N−1,

P = blkdiag
(
IN ⊗Q, QN , IN ⊗R), (26)

where ⊗ is the Kronecker product.13 Similarly, q can be written compactly as,

q =

1N ⊗−Qxg
−QNxg

0(N ·nu)×1

 , (27)
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with 1N denoting a column vector of N ones. Next the dynamics, state, and control constraints
must be represented in (25). The dynamics constraints will be embedded in the equality constraint
Fx = w, with the following for F :

F =

[(
IN+1 ⊗−Inx +

[
01×N 01×1
IN 0N×1

]
⊗Ad

) ([
01×N
IN

]
⊗Bd

)]
. (28)

The corresponding vector, w, includes the initial condition of x0, as well as the affine contribution
to the dynamics at each time step:

w =


−x0

−Ddd(τ0, f0)
−Ddd(τ1, f1)

...
−Ddd(τN−1, fN−1)

 , (29)

Where the function d(τ, f) is expressed in equation (13), and the affine transition matrix Dd is
defined in equation (20). For the box constraints on x, the lower and upper bounds will equal to the
state and control constraints respectively:

lb =

[
1N+1 ⊗ xlower

1N ⊗ ulower

]
, ub =

[
1N+1 ⊗ xupper
1N ⊗ uupper

]
. (30)

Lastly, it is important to note that the problem matrices P and F are both sparse, consisting mostly
of zeros. By properly leveraging sparse matrix libraries, OSQP can exploit this sparsity, resulting in
much faster solve times.

EXAMPLES

The MPC approach was compared to an LQR feedback control law for a sample thruster firing.
In all tests, the thruster was fired at the 7.5 second mark, exciting all of the modal coordinates
through both translational acceleration and disturbance torques. The pointing error achieved by both
controllers is plotted in Figure 2. The MPC solution was able to anticipate the thruster firing and
converge on an optimal trajectory that minimized pointing error. The LQR controller, in contrast,
was only able to react to the attitude errors after they accumulated, and had significant trouble
maintaining pointing during this period.

LQR Controller Cost Function

For the LQR feedback controller, the same linear dynamics model described in equation (19) was
used. This discrete model was then used in conjunction with a quadratic cost function to determine
the optimal feedback gain matrix. Since the goal state for this system is xg = 0(6+2j)×1, the cost
function for this problem was the following:

`(x, u) =
∞∑
0

(xTkQxk + uTkRuk), (31)

where Q and R are diagonal matrices that determine the weights on each state and control,

Q = blkdiag(100 · I3, 30 · I3, I3, I3), R = 5 · I3. (32)
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These gains were tuned to minimize the spacecraft pointing error, while also being careful to avoid
actuator saturation. Clamping was used to ensure that the commanded reaction wheel acceleration
did not exceed the torque limits of ± 0.01N ·m.

MPC Controller Cost Function

Similar to the LQR controller, weights were tuned for the MPC cost function expressed in (23).
Since the constraints on the reaction wheels are explicitly handled in the MPC framework, the
cost weighting on control usage is significantly less important in ensuring the controller functions
well. The cost function chosen for this example is described by the following Q and R weighting
matrices:

Q = blkdiag(20 · I3, I3, I3, I3), R = 10 · I3. (33)

It is worth re-iterating that the differences in cost functions between the LQR and MPC controllers
is a result of needing to tune (32) to avoid actuator limits, while these are explicitly handled by
constraints in the MPC controller.

Simulation

A spacecraft with 3 flexible modes was used for this experiment. The flexible characteristics
were chosen to best exemplify a rigid spacecraft bus with flexible appendages. For this example, a
spacecraft was used with the following inertia dyadic19

J =

1.0200 0.0946 0.1381
0.0946 1.9979 −0.0975
0.1381 −0.0975 2.9821

 kg ·m2, (34)

as well as the following angular and linear momentum coupling matrices,

Φ =

0 1 0
1 0 0
0 .2 −.8

 kg ·m/s2, G =

 0 0 1
0 1 0
−.7 .1 .1

 kg ·m/s2. (35)

Together, these describe the mode shapes, and their impact on the spacecraft dynamics. These
modes oscillate with respect to the following damping and stiffness matrices,

C =

.0006 0 0
0 .0025 0
0 0 .0016

 1/s, K =

.0987 0 0
0 1.5791 0
0 0 0.6169

 1/s2. (36)

These matrices correspond to natural frequencies of σ = .05, .2 and .125 Hz, with damping ratios
of ζ = .001. This completes the description of the flexible appendages up to the 3rd mode. The last
parameter for the full spacecraft description is the reaction wheel Jacobian, which for this example,
was chosen to be the identity matrix:

Bsc = I3, (37)
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The reaction wheel Jacobian, Bsc, describes how the reaction wheels contribute to the angular
momentum of the spacecraft. The MPC problem was solved for a sample rate of 2 hz, and a horizon
of 100 steps. The QP was solved at every time step, and only the first control input of the 100-step
horizon is executed before re-solving. Using OSQP,16 each QP took less than 1 ms to solve∗. This
is due to the general speed of OSQP, it’s ability to exploit problem sparsity, as well as the ability to
warm start the solver with the solution from the previous time step.

Controlling the flexible spacecraft with MPC during this period was compared against a generic
Linear Quadratic Regulator (LQR) feedback control law that was a formulated from the same linear
system used in the MPC approach. These two methods were used to close the loop on the true
nonlinear dynamics, and the pointing error is plotted in figure 2.
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Figure 2. Pointing errors for LQR and MPC attitude control stationkeeping methods
for a flexible spacecraft. Perturbations are due to a chemical thruster firing at 7.5
seconds.

∗solve times reflect testing with a quad-core Intel Core i7-4870HQ @ 2.5 GHz
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Figure 3. Reaction wheel control torques for LQR and MPC for flexible attitude stationkeeping.
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Figure 4. Normalized modal coordinate displacements for the first three modes of the
flexible spacecraft during LQR and MPC attitude stationkeeping.
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The MPC solution significantly outperforms LQR in pointing error, control usage, and modal
coordinate excitement. This results in higher pointing accuracy and better payload performance,
with the added benefit of less power draw from the reaction wheels. Another advantage of the MPC
solution is that the controls respond to the thruster firing for 40 seconds, and after that point, the
control period is effectively finished. In the LQR case, the feedback controller has trouble dealing
with lowest mode, and had to perform control for the full 100 seconds. This is worse from a power
consumption perspective, as well as potentially introducing more jitter into the spacecraft payload.

Robustness Analysis

The previous section demonstrated the overwhelming advantage that MPC has when compared
to LQR for a stationkeeping control policy in the presence of a thruster firing. In that example,
the system dynamics were known with absolute certainty. In this section, a series of Monte-Carlo
simulations are run with uncertainty applied to various aspects of the dynamics model. This tests
the robustness that MPC and LQR have to model parameters, more specifically, robustness to poor
characterization of the flexible behavior. This is especially relevant for flexible spacecraft because
representative flexible testing on earth is challenging. One thousand trials were run, with normally
distributed multiplicative errors applied to model parameters at the start of each trial. The standard
deviations for each of these errors are captured in table 1. The 3-σ bounds on the pointing error

Parameter Standard Deviation

Damping Ratio 10%

Natural Frequencies 10%

Angular Coupling Matrix Rotation 5 deg

Angular Coupling Matrix Scaling 5%

Linear Coupling Matrix Rotation 5 deg

Linear Coupling Matrix Scaling 5%

Table 1. Multiplicative Gaussian white noise applied to various parameters during Monte-Carlo runs.

performance for these trials are captured in figure 1. This plot shows variation in both the LQR and
MPC performances based on the variations applied to the model parameters. The LQR pointing
errors reach a higher maximum pointing error, as well as accrue a larger average pointing error than
MPC. To look at the differences in performance, the root-mean-square error was calculated for each
Monte Carlo run and plotted for both the LQR and MPC cases in figure 5.
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Figure 5. Root-mean-square attitude pointing error for 1000 Monte-Carlo runs of
MPC and LQR for flexible spacecraft control.

The root-mean-square pointing error is an important metric for determining control performance,
but it does not tell the full story. Many attitude control requirements specify a maximum allowable
pointing error, where the pointing accuracy of the spacecraft must be constrained to be within a
certain threshold. Because of this, the maximum experienced pointing error for the spacecraft was
recorded for each run, and plotted in figure 6. In both figures 5 and 6, it is clear that the attitude
pointing performance of MPC is significantly better than that of LQR. In 1000 trials, there was not
a single example where MPC was outperformed by LQR in either of these two categories. This is
a testament to the effectiveness of MPC, even when the flexible behavior of the spacecraft is poorly
characterized.
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Figure 6. Maximum attitude pointing error for 1000 Monte-Carlo runs of MPC and
LQR for flexible spacecraft control.

CONCLUSIONS

A method for controlling flexible spacecraft during thruster firings using MPC was detailed and
compared to traditional feedback control methods. MPC was shown to significantly outperform
LQR feedback control in both pointing accuracy and robustness. The MPC problem was formu-
lated in such a way that it can be readily solved by a standard QP solver with sub-millisecond
solve times by taking advantage of problem structure and warm starting. The QP solver chosen
for this experiment, OSQP,16 is open-source and readily available for embedded systems, making
it a strong candidate for onboard use in flight software. The ability to robustly control highly flex-
ible structures opens up possibilities for less rigid spacecraft designs that are lighter and cheaper
to produce, with only a small penalty for increased computational load. All code for the simula-
tions presented in this paper is available online at github.com/RoboticExplorationLab/
FlexibleSpacecraftMPC.
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