
CAPO: Control and Actuator Placement Optimization
for Large-Scale Problems with Nonlinear Dynamics

Mitchell B. Fogelson1, Giusy Falcone2, and Zachary Manchester1

1 Carnegie Mellon University, Pittsburgh, PA, USA
2 University of Michigan, Ann Arbor, MI, USA

Corresponding Author Email: mfogelson@cmu.edu

Abstract. Actuator selection and placement are critical aspects of robot design
that are tightly coupled to task performance. Jointly optimizing actuator place-
ment and control policies or trajectories can enhance efficiency and robustness.
However, current optimization methods struggle to scale to high-dimensional sys-
tems with many degrees of freedom, including soft robots, large flexible space-
craft, or cloth manipulation. We propose CAPO, a scalable Control and Actua-
tor Placement Optimization method that jointly optimizes the number, type, and
placement of actuators, along with control trajectories. CAPO concurrently op-
timizes over all the control and design parameters in a single computationally
tractable nonlinear program that scales favorably with system size and complex-
ity. CAPO is evaluated against a state-of-the-art genetic algorithm and mixed-
integer programming solvers on six problems, including an acrobatic multiro-
tor aircraft, a spinning space structure, cloth manipulation, and a soft robotic
swimmer. On small-scale problems, CAPO finds comparable solutions with sim-
ilar objective values in 2.5-218x less time than existing methods. On large-scale
problems, CAPO is the only method capable of finding a feasible solution, and
it achieves actuator configurations that reduce the total number of actuators by
12%-27.5% compared to baselines.

Keywords: Control Theory and Optimization · Optimal Control · Design Opti-
mization

1 INTRODUCTION

Nature provides many examples of physical structures adapted to perform a behavior
efficiently. For instance, humans can swim long distances, but are much slower than
dolphins. Similarly, the design of a robotic system significantly influences its ability to
complete tasks, as demonstrated by Boston Dynamics’ Atlas robot being one of the few
humanoids to perform a backflip [2]. From a designer’s perspective, creating a backflip-
ping robot requires significant effort and many iterations to select and place actuators.
From the control engineer’s perspective, significant effort is applied to enable the robot
to achieve the backflip while operating within the constraints of the selected actuators.
Within the robotics community, the type and placement of actuators are essential factors
in robot design across various applications and tasks, from soft robot locomotion [5] to
maneuvering continuum robots [1, 3, 7, 17, 25, 31, 36] and resource-constrained robot
control [33].

2 M.B. Fogelson et al.

Actuator selections from a set of options are discrete choices that expand the de-
sign space combinatorially as the number of actuators considered grows. Design and
control optimization are typically performed in separate sequential loops, resulting in
inefficient evaluation of intermediate designs. Direct collocation (DIRCOL) is an op-
timal control method used to determine open-loop control trajectories that minimize a
cost function while adhering to dynamics and actuator constraints. DIRCOL optimizes
state and control variables simultaneously, making it well-suited for handling complex
nonlinear dynamics [14]. A unique feature of DIRCOL is that intermediate iterations
in the optimization loop do not need to be dynamically feasible; only the final result
is required to satisfy all constraints. Including parameters like actuator type and posi-
tion as decision variables in DIRCOL can mitigate the costly evaluation of intermediate
designs.

A simplified diagram showing the joint actuator and control optimization problem
can be seen in Figure 1. Applying these parameters in a DIRCOL formulation and
solving the joint problem of actuator selection and control optimization problem leads
to a mixed integer nonlinear program (MINLP), which is NP-hard [28]. This makes
it computationally impractical to find globally optimal solutions in most cases. Thus,
designing efficient algorithms that can quickly find feasible sub-optimal solutions while
scaling to large problems is a crucial area of research in robotics.

Optimal Actuator Set and Control Trajectory

Dynamics

Model

Thrust

Constraints

Reference

Trajectory

CAPO:

Control and Actuator Placement Optimization

Trajectory

Actuator Placement

(x,y,z)

Number of

Actuators

Fig. 1. Example of joint robot-control-and-design optimization, which takes a user-defined refer-
ence trajectory, dynamics models, and thrust constraints as input, and outputs a feasible design
configuration and control trajectory.

To tackle the challenges of joint actuator and control optimization for robot design,
we propose CAPO, a single-level optimization formulation for actuator placement and
control that jointly minimizes the number of actuators, control effort, and tracking er-
ror to perform a desired task. CAPO achieves this by relaxing the actuator-placement
problem into a computationally tractable nonlinear program (NLP), providing a frame-

CAPO: Control and Actuator Placement Optimization 3

work that scales well for complex, high-dimensional robots and trajectories. To evalu-
ate its performance, CAPO is compared to three state-of-the-art algorithms: a genetic
algorithm (GA) [38], a mixed-integer quadratic program (MIQP) solver [12], and a
mixed-integer nonlinear program (MINLP) solver [18]. These methods are compared
in Table 1, which highlights CAPO’s advantages. We evaluate the methods on four
low-dimensional actuator-placement design problems in simulation, including an over-
actuated double integrator, an acrobatic multirotor aircraft, a flexible space structure,
and a cloth-manipulation task. CAPO is further demonstrated on three additional high-
dimensional problems that the other methods failed to solve, including a 120-degree-
of-freedom (DoF) flexible space structure, a 150-DoF cloth-manipulation task, and a
234-DoF soft-robotic swimmer. Our contributions include:

1. A scalable algorithm, CAPO, for the simultaneous control and actuator-selection-
and-placement problem that concurrently considers actuator type, placement, and
control parameters.

2. A domain-randomization approach for improved design robustness that maintains
problem sparsity structure and scalability.

3. Experimental validation of CAPO on various high-dimensional robotics problems
demonstrating its computational advantages over other state-of-the-art methods.

The paper proceeds as follows: Section 2 reviews background information on nonlinear
programming, integer-programming relaxations, and L1 regularization. Section 3 sur-
veys related works that address the actuator-placement problem. Section 4 formalizes
the control-and-actuator-placement problem. Section 5 derives the CAPO algorithm.
Section 6 provides implementation details and presents the experimental results. Fi-
nally, Section 7 summarizes the findings and proposes directions for future work.

Table 1. Comparison table of the proposed method, CAPO, with three state-of-the-art ap-
proaches: Genetic Algorithm, Mixed Integer Quadratic Program, and Mixed Integer Nonlinear
Program. CAPO’s primary advantages are its ability to jointly optimize all parameters in a single
problem, handle nonlinear constraints, and scale effectively to large numbers of binary variables.

CAPO
(Ours)

Genetic
Algorithm

(GA)

Mixed Integer
Quadratic Program

(MIQP)

Mixed Integer
Nonlinear Program

(MINLP)
Single Level ✓ × ✓ ✓

Nonlinear
Constraints

✓ ✓ × ✓

Scalable to
High Dim.

✓ × × ×

2 Background

We now review background information on Linear and Nonlinear Programming, Mixed-
Integer Programming, the branch and bound method for solving Mixed-Integer Pro-
grams, and the L1 regularization method for optimization.

4 M.B. Fogelson et al.

2.1 Linear, Nonlinear, and Mixed-Integer Programming

Smooth nonlinear programs (NLPs) can be expressed in the following standard form,

minimizex, y ℓ(x, y) (1a)

subject to f (x, y) = 0, (1b)
g(x, y)≥ 0, (1c)

where, x ∈Rn and y ∈Rm are decision variables, ℓ(·) is a scalar-valued objective func-
tion, and f (·) and g(·) are equality and inequality constraints, respectively. Functions
are assumed to be at least twice continuously differentiable. If ℓ(·), f (·), and g(·) are
linear functions, the problem is known as a linear program (LP). If ℓ(·) is quadratic
and both f (·) and g(·) are linear, the problem is called a quadratic program (QP). In all
of these cases, locally optimal solutions satisfy the Karush-Kuhn-Tucker (KKT) condi-
tions (first-order necessary conditions) [20].

A mixed-integer nonlinear program (MINLP) adds the constraint,

y ∈ {0,1}m (2)

where the y variables are constrained to take on integer values. Note that, without loss of
generality, we consider binary constraints y ∈ {0,1}m. Similar to the continuous case, if
ℓ(·), f (·) and g(·), are all linear functions, the problem is known as a mixed-integer lin-
ear program (MILP), with mixed-integer quadratic programs (MIQP) defined similarly.
Mixed-integer programs are NP-hard in general, and their computational complexity
grows combinatorially in the problem size [40].

The branch-and-bound method is a prevalent technique for solving mixed-integer
programs [21]. In its basic form, branch and bound first relaxes the binary constraints
(2), known as a continuous relaxation, then solves the relaxed problem to optimality.
This relaxed problem is strictly easier than the original binary-constrained version, and
will have an objective value that lower bounds the original problem. The solution to this
subproblem returns (x(j),y(j)), where j is the subproblem index. If all values of y(j)

happen to take on values of 0 or 1, then the solution is also an optimal solution to the
original MIP. If this is not the case, the problem is branched into two new problems for
each element y(j)

i /∈ {0,1}; one with the additional constraint yi = 0 and the other with
the additional constraint yi = 1. The new subproblems are solved, and the branching
continues until all values in the solution satisfy the original problem constraints. If a
feasible solution is found, its objective value is used to prune branches that have relaxed
solutions with higher objective values, as these branches cannot yield a better solution
than the one already found.
2.2 L1 Regularization Methods

One-norm or L1 regularization (also called “LASSO regularization”) is commonly used
in statistics and machine learning to drive many model coefficients to zero, producing
sparse solutions [8, 11, 32, 37, 42]. L1 regularization presents itself as an additional
penalty term in the objective function:

minimizex,y ℓ(x,y)+
m

∑
i=1

α|yi| (3a)

CAPO: Control and Actuator Placement Optimization 5

where α is a scalar penalty weight. While this method is well-known and widely used
in the statistics and machine-learning communities, it is less frequently applied in the
design community. Notably, Ha et al. [13] and Skouras et al. [34] have utilized L1-
regularization to promote sparsity in design-optimization applications. The hyperpa-
rameter α controls the sparsity of the solution, with larger values encouraging solutions
with more zero elements. One may need to evaluate multiple α values to find a desirable
solution.

3 RELATED WORKS

Several common approaches exist for addressing the mixed-integer nature of design
optimization. A brief survey of sampling-based methods, mixed-integer programming,
and continuous-optimization methods that solve relaxations of mixed-integer programs
is presented.
3.1 Sampling Methods

Sampling-based methods are a common technique for robot configuration design. These
methods systematically generate or select robot configurations from the design space.
Genetic algorithm (GA), Simulated Annealing (SA), and reinforcement learning (RL)
approaches are included in this category. In general, while sampling-based methods are
very flexible and straightforward to implement, they can be computationally expensive
due to the combinatorial nature of design problems and, subsequently, large design
space.

Sampling-based approaches can leverage modern multi-core computing capabilities
to parallelize the evaluation of many configurations simultaneously. Rao et al. [30] used
a GA approach to find the optimal placement of actuators on a two-bay truss to dissipate
the structure’s energy. Borairi et al. [23] and Molter et al. [24] both use GA to place
actuators along flexible structures. Baykal et al. [3] and Kuntz et al. [1] use an adaptive
SA approach for robot kinematic design. Using the observability and controllability
matrices from the linearized dynamics, Hu et al. sample many configurations to find the
optimal placement of reaction wheels for hydroelastic bodies [15]. Bergeles et al. [7]
and Anor et al. [36] both use direct search methods, which iteratively samples points
around a current guess for concentric tube robots.

Zhao et al. [41] introduced Robogrammar, an RL approach to iteratively apply dis-
crete grammar rules to construct robot configurations that maximize locomotion speed
over specific terrains. This approach uses learning to direct the search in the large design
space to find the best configurations. However, each design must be evaluated through
an expensive control optimization and simulation loop. In this work, concurrent opti-
mization of design, controls, and simulation state enables greater efficiency, addressing
a limitation of sampling-based methods, which struggle to optimize these variables si-
multaneously due to the growth in dimensionality.

3.2 Mixed-Integer Programming

Mixed-integer programs (MIPs) can natively handle discrete actuator-selection vari-
ables. Chanekar et al. [9] used an MIQP approach for the optimal placement of actu-
ators in linear systems. Their formulation allowed for globally optimal solutions to be

6 M.B. Fogelson et al.

found but suffered from the computational burden of the branch-and-bound algorithm
as the number of parameters increased. Deenen et al. [10] used Gurobi, a solver for
MILPs and MIQPs, to optimize actuator placement for a hypothermia treatment for
cancer patients.

MIQP formulations have two fundamental limitations: the solution time scales poorly
with the number of binary variables considered, and they cannot handle nonlinear dy-
namics constraints easily. An increasing number of solvers have been developed for
mixed-integer nonlinear programs [18, 19, 26]. However, these solvers must still deal
with solving a large number of relaxed NLP subproblems during branching, and often
fail to find constraint-satisfying solutions.

3.3 Nonlinear Programming

Studies have developed strategies to relax or eliminate discrete parameters within the
realm of robotic co-design. For example, Skouras et al. [34] presented a method for
the design of tether-actuated deformable characters that could satisfy a set of poses. In
a multi-step process, the approach identified a minimal set of tethers, their locations,
and the optimal material parameters to best match the desired poses. A regularization
technique akin to LASSO was employed to zero the force vector from redundant tethers,
thus being able to handle the discrete problem using continuous optimization. However,
their method is limited to static pose configurations.

Spielberg et al. [35] present a formulation for the design and control of task-driven
robots, including continuous design parameters such as link lengths and actuator loca-
tions. They also include discrete parameters such as actuator type. They relax actuator-
type parameters through a linear interpolation between actuator efforts. However, the
number of actuators in the design was pre-specified. Lin et al. [17] used a scalable NLP
solver to design concentric tube robots, but excluded any integer variables from the
problem formulation.

4 The Control-and-Actuator-Placement Problem

This work seeks to determine the optimal type, location, and number of actuators a
robot needs to track a specified trajectory while minimizing control effort. We extend
the standard DIRCOL formulation:

minimizex2:N ,u2:N−1
ℓ(xk,uk) (4a)

subject to f (xk+1,xk,uk) = 0 ∀k, (4b)
g(xk,uk)≥ 0 ∀k (4c)

where xk is the discrete-time robot state (including the robot’s position, orientation,
and velocity) and uk is the discrete-time control input (describing the external force or
moment being applied to the robot), to include additional actuator design parameters.
To this end, a time-invariant actuator-selection vector βββ and a time-invariant continuous

CAPO: Control and Actuator Placement Optimization 7

actuator position variable r are introduced:

βββ =

β1
...

βM

 , r =

 x1,y1,z1
...

xM,yM,zM

 (5)

Here, βββ is a binary vector where the index value describes the existence of an actuator,
and r specifies the position of the actuators on the robot. For example, βββ could consist
of a set of thrusters and reaction wheels of various specifications to be considered for
a spacecraft design where βββ [1] is an ion thruster and r[1] = (x1,y1,z1)B is the position
of the thruster in the body frame. Therefore, if βββ [1] = 1, there is an ion thruster at
r[1] = (x,y,z)B, and if βββ [1] = 0, the ion thruster is not added to the spacecraft. A dense
set of actuator types (Eg. thrusters, reaction wheels, propellors, etc.) within specified
control volumes (to prevent overlapping actuators) is enumerated for a particular design
problem a-priori by the designer. While not strictly necessary, the authors found it
easiest to start with an actuator set that made the system fully controllable.

The new problem is to find a robot actuator configuration that enables the robot
to best track a user-specified reference motion in the presence of disturbances. This
problem can be formulated as the following MINLP:

minimize
x2:N ,u2:N−1,βββ ,r

∑
k
ℓ(xk,uk,βββ ,r), ∀ x1 ∈ X1 (6a)

subject to f (xk+1,xk,uk ⊙βββ ,r) = 0 ∀k, (6b)
g(xk,uk,βββ ,r)≥ 0 ∀k, (6c)

βββ ∈ {0,1}m, (6d)

where xk is the discrete-time system state, uk is the control input vector, N is the total
number of knot points (which is problem dependent). βββ is the binary vector of variables
that specifies active actuator configuration, and r is the vector of actuator positions. ℓ(·)
is the objective function related to trajectory tracking, control minimization, and ac-
tuator reduction. f (·) is the nonlinear discrete-time dynamics, and g(·) are additional
task-specific inequality constraints, such as thrust limits and actuator position limita-
tions. The operator ⊙ seen in (6b) denotes an element-wise multiplication (Hadamard
product) coupling the actuator selector vector, βββ , and the control input, uk.

To avoid overfitting the robot actuator configuration, βββ , to a specific initial condition
x1, we include the set of all possible initial conditions, X1, in (6). In the next section,
we transform this complete problem, which is computationally intractable for high-
dimensional problems, into a formulation that scales well for large-scale problems.

5 The CAPO Algorithm

The CAPO algorithm provides a single-level optimization formulation that finds fea-
sible solutions to the MINLP shown in (6). CAPO, particularly, is designed to support
high-dimensional robot-design problems when the size of βββ increases, thus considering

8 M.B. Fogelson et al.

a large number of potential actuators. This is achieved by relaxing the binary actuator-
selection vector, βββ , including an L1 regularization on βββ , and sampling and solving over
a finite number of trajectories from the set of initial conditions X1 to ensure solutions
are valid over a wide range of the state space.

5.1 Discrete Relaxation and L1 Regularization

Following standard practice for MINLP relaxation, a continuous relaxation transforms
the constraint (6d) into an inequality,

0 ≤ βββ ≤ 1, (7)

which transforms (6) into a continuous NLP, which can be solved relatively efficiently
for very high dimensional problems. However, having a βββ vector with many non-zero
values does not support a parsimonious actuator configuration. To achieve a sparse set
of actuators, an L1 regularization is applied to βββ . Consequently, the objective function
in (6a) is modified as follows:

ℓ(x,u,βββ ,r)+α|βββ |1 (8)

Because βββ is time-invariant, this regularization nullifies an actuator at all times steps,
as opposed to applying regularization directly to the control inputs, which would only
nullify the control at specific time instances. This is an important design decision of
this paper, as the inclusion of additional decision variables βββ effectively decouples the
actuator selection from the control optimization problem. The parameter α may require
tuning between multiple trials for each problem to find a balanced regularization term.

5.2 Configuration Robustness

It is impossible to account for all possible initial conditions in pursuing a robust config-
uration. Hence, CAPO optimizes over a set of sampled initial conditions and resulting
state trajectories. Samples are drawn from a normal distribution:

x(i)1 ∼ N (X̄1,Σ). (9)

This approach ensures that the solution obtained is robust against disturbances. The
covariance Σ should be selected based on the expected or desired amount of disturbance
the robot should recover from. While sampling introduces more decision variables, the
problem structure remains sparse, thereby facilitating efficient solutions. As an aside,
given that multiple control trajectory samples are being solved for, a feedback control
policy u = πθ (x) could be recovered from these samples using regression techniques or
supervised learning with a neural network function approximator.

5.3 Relaxed Nonlinear Program

We now summarize CAPO, our sparse and computationally tractable relaxed single-
level NLP, as:

CAPO: Control and Actuator Placement Optimization 9

minimize
x(1:I)

2:N ,u(1:I)
2:N−1,βββ ,r

∑
i
∑
k
ℓ(x(i)k ,u(i)

k ,βββ ,r)+α|βββ |1 (10a)

subject to f (x(i)k+1,x
(i)
k ,u(i)

k ⊙βββ ,r) = 0 ∀(k, i), (10b)

g(x(i)k ,u(i)
k ,βββ ,r)≥ 0 ∀(k, i), (10c)

0 ≤βββ ≤ 1, (10d)

where x(1:I)
2:N is I instances of the robot state trajectory consisting of N knot points and

u(1:I)
2:N−1 is I instances of the robot control trajectory consisting of N knot points. Note

that there is only one instance of βββ and r as they are invariant across all trajectories and
time instances.
5.4 Projection

After finding a solution to (10), it is straightforward to project this solution onto the
feasible set of the original MINLP from (6). The solution to βββ , due to the L1 regular-
ization, will consist of values that are either zero or non-zero. Since the βββ and u terms
are coupled in the constraints, the control trajectories u can be updated as follows:

ũ(i)
k = u(i)

k ⊙βββ ∀(k, i) (11)

where ũ denotes the final, projected control values. For the terms where βββ is zero,
the u terms will be zero for all time steps and instances. The projection always makes
ũ ≤ u; however, zero must be included in the feasible control range. After projecting
the control values, the βββ terms can be projected onto the binary constraint through the
following operation:

β̃ [m] =

{
0, β [m] = 0
1, β [m]> 0

∀ 1 : M (12)

where β̃ββ denotes the final binary actuator-selector vector. Due to floating point numer-
ics, a small threshold (Eg. 1e-8) should be used to apply the final βββ projection.

6 Experiments
This section evaluates CAPO’s scalability and performance by comparing it directly
to other optimization algorithms, including Genetic Algorithms (GA), Mixed-Integer
Quadratic Programming (MIQP), and Mixed-Integer Nonlinear Programming (MINLP).
The experiments assess solution quality, computational efficiency, and robustness across
various problems, emphasizing CAPO’s strengths in handling high-dimensional prob-
lems and the trade-offs in solution optimality.

6.1 Optimization and Implementation

Solvers: CAPO is implemented in Julia using the IPOPT solver [39]. IPOPT is an
interior-point method that can efficiently solve nonlinear programs with a large number
of decision variables and constraints.

10 M.B. Fogelson et al.

To provide a basis for comparison, a bi-level genetic algorithm inspired by [6] was
implemented using the Evolutionary.jl package [38]. The genetic algorithm uses an in-
verse roulette selection method, a uniform crossover with a crossover rate of 0.8, and
a flip mutation with a mutation rate of 0.1. The population size is 10, and the mini-
mum elitism is 10%. To evaluate each sample in the population, an NLP is employed
using IPOPT to optimize only the continuous variables. For efficiency, the samples are
evaluated in parallel using the Distributed.jl package in Julia [4].

The MIQP formulation, similar to the approach described in [9], is implemented
and solved using Gurobi [12]. Linearized dynamics replace the nonlinear dynamics
constraint described in (10b) if possible. A feasibility tolerance of 1e-3 and a MIPGap
of 90% is used as termination criteria for the solver; these values were found to achieve
the best performance after trial and error.

The MINLP formulation is implemented as described in 6a, and solved using Ju-
niper [18], where IPOPT is used as NLP solver and HiGHS as MIP solver [16, 39].

Hyperparameters: All experiments were run on an AMD EPYC 7502 32-Core pro-
cessor. Five initial conditions were sampled from a normal distribution N (x̄0,0.001).
Each method was run five times on each problem with perturbed initial guesses. The
following objective function was used,

I

∑
i=1

N−1

∑
k=2

(
(x(i)k − x̄k)

T Q(x(i)k − x̄k)+(u(i)
k − ūk)

T R(u(i)
k − ūk)

)
+α |βββ |1 (13)

where Q=10 I, R=1e3 I and α=9e6 for the acrobatic multirotor problem and Q=10 I,
R=I and α=10 for all other problems. x̄ and ū are reference state and control trajectories,
respectively.

Dynamics: A simplified maximal-coordinate dynamics formulation was used for each
problem representing the robot as a series of rigid bodies connected by springs and
dampers whose stiffness can be tuned to represent various soft joints. The dynamics are
described by:

x =

x1
...

xn

 , xi =

pi
qi
vi
ωωω i

 , ẋ =

ẋ1
...

ẋn

 , ẋi =

vi

1
2 qi ⊗ωωω i

M−1
i · (fext,i + fint,i)

J−1
i · (τττext,i + τττ int,i −ωωω i × Ji ·ωωω i)

 (14)

fext,i = u f ,i +Mi ·g, fint,i =−Kx∆pi j −Cx∆vi j (15)

τττext,i = uτ,i +pi ×qi ⊗ (fext,i + fint,i), τττ int,i =−Kt∆φφφ i j −Ct∆ωωω i j (16)

where pi ∈ R3 represents the position vector, qi ∈ R4 is the quaternion representing
orientation, vi ∈ R3 is the linear velocity, and ωωω i ∈ R3 is the angular velocity. u f ,i and
uτ,i represent the control inputs that exert forces and torques on the body, respectively.
Kx,Cx,Kt ,andCt are the spring and damper matrices and ∆pi j,∆φφφ i j,∆vi j,and∆ωωω i j
are the position, orientation and velocity differences between two connected bodies.
The mass matrix Mi and the inertia matrix Ji define the physical properties of the body,

CAPO: Control and Actuator Placement Optimization 11

respectively. This formulation assumes the body’s mass is much greater than the mass
of the actuators and ignores the effects of adding or removing actuators to the mass and
inertial matrices. Additionally, no complex aerodynamic or fluid effects, such as drag,
are considered.

CAPO Formulation: The choice of actuator type and location in design problems
varies by application: 1-DoF vertical propellers for multirotor, 1-DoF thrusters and re-
action wheels at the center of mass (COM) for space structures, and 1-DoF forces and
torques at COM for cloth and soft robots. The full CAPO formulation for the experi-
ments are as follows:

minimize
x(1:5)

2:N ,u(1:5)
2:N−1,βββ ,r

(13)

subject to x(i)k +dt ∗ f (
x(i)k +x(i)k+1

2
,βββ ⊙u(i)

k ,r) = x(i)k+1,

x(i)N = x̄N ,

umin ≤ u ≤ umax,

rmin ≤ r ≤ rmax,

0 ≤ βββ ≤ 1

(17)

where the dynamics constraint is specified using an implicit midpoint integration. In
the latter three cases, position variables are not considered due to the assumption of full
actuation at the COM. However, these assumptions can be modified for future research
or different problems.

6.2 Scalability

The scalability of the four methods is compared empirically using an over-actuated
double integrator problem. The number of control inputs is swept from m = 2 : 200
for GA and MINLP and m = 2 : 300 control inputs for CAPO and MIQP to increase
the difference resolution between these two methods. The CAPO formulation for this
problem can be written as follows:

min
x2:10,u2:9,βββ

(13)

s.t. xk +dt(
[

0 1
0 0

]
2x2

xk +xk+1

2
+

[
0 · · · 0
1 · · · 1

]
2xm

(β ⊙uk)) = xk+1,

x10 = x̄10,

0 ≤βββ ≤ 1,
Q = 10.0∗ I2x2, R = 1.0∗ I2xm, α = 10.0

(18)

where xk is a vector with position and velocity, uk is a vector with m acceleration values,
βββ is a binary vector with m values. An implicit midpoint integration scheme is used for
the dynamics constraint. For this toy example, the optimal solution is known to be
a single control input, and all models found this solution for all instances of m. The
runtime for each solver can be seen in Fig. 2.

12 M.B. Fogelson et al.

CAPO achieves a 257% improvement over MIQP at 300 control inputs. This is
due to the many binary variables in the MIQP formulation and the corresponding large
branching factor. On the other hand, the binary relaxation enables CAPO to maintain fa-
vorable performance and optimal solutions as the number of actuators increases. While
CAPO only shows moderate improvement on the high dimensional problems for this
example with linear dynamics, larger improvements are expected on nonlinear problems
since Gurobi cannot handle these systems easily.

The GA performs poorly in the proposed toy example due to the sparsity of the
solution, which can cause the GA to search for a long time before satisfying the exit
criteria. Additionally, the overhead for parallelization on this problem, which consists
of few parameters, impedes its performance. The plateau seen in the results from the
GA is due to a time-limit exit condition and not due to improved efficiency on larger
problems.

The MINLP algorithm performs poorly because it must solve many consecutive
NLP problems. Given knowledge about the problem, tuning the exit conditions could
also improve the MINLP’s performance.

0 50 100 150 200 250 300

10−1

100

101

102

103

GA Time limit

CAPO advantage

Number of Control Inputs

So
lv

e
Ti

m
e

(s
)

Gurobi Juniper
CAPO GA

Fig. 2. Log plot of runtime scaling comparison for CAPO, GA, MIQP, and MINLP on an over-
actuated double-integrator problem with 2-200 control inputs and up to 300 control inputs for
CAPO and MIQP, highlighting CAPO’s superior scaling with large binary parameters reaching
257% improvement at 300. CAPO is significantly faster than MINLP and GA methods at all
scales and outperforms the MIQP solver as binary variables exceed 150. However, CAPO can also
handle nonlinear constraints and objectives natively, which the MIQP does not always support.

6.3 Benchmark Problems

Multirotor Flip: The first task aims to design a multirotor to perform an acrobatic
flip maneuver, seen in Fig. 3a. The multirotor is modeled as a single rigid body with
the quadrotor dynamics are described by (14). The multirotor is initialized with 16
propellers placed in a uniform grid around the multirotor’s body. Each actuator is con-
fined to a predefined control volume so that actuators cannot overlap, and the controls

CAPO: Control and Actuator Placement Optimization 13

Multirotor Flip

t=0.0 t=0.25 t=0.5

(a)

t=0.75

t=0.0 t=0.25 t=0.5 t=0.75

t=0.0 t=0.25 t=0.5 t=0.75

t=0.0 t=0.25 t=0.5 t=0.75

(b) Rotating Space Structure

(c) Cloth Manipulation

Soft Robot Swimmer(d)

Fig. 3. Reference trajectories for (a) multirotor flip (6 DoF) with a total of 16 thrusters to be
selected and placed on the body, (b) rotating space structure (12 DoF) with a total of 12 actuators
(6 1-D thrusters, 6 1-D reaction wheels) to be selected and placed on the structure, (c) cloth
manipulation with 25 nodes in a 5x5 grid (150 DoF) with a potential for 150 control points at
each of the nodes, consisting of potential 1-D forces or moments applied to the cloth nodes, and
(d) soft robotic swimmer with 39 discrete actuatable body units (234 DoF) with a total of 234
actuators to be placed on the discrete bodies to apply forces or moments at that body unit.

are limited to positive thrust, umin = 0. The reference trajectory was designed by hand,
consisting of 50-knot points, leading to 7218 decision variables. The results are reported
in Table 2 for CAPO, MINLP, and GA. The MIQP was excluded from this experiment
due to the highly nonlinear dynamics, which do not linearize well.

CAPO found solutions to this problem with a 2.55X speed increase. CAPO finds
better solutions than GA and performs similarly to MINLP’s. Due to poor initializa-
tion and the nonconvexity of this problem, CAPO failed to satisfy the task twice. The
MINLP approach is less susceptible to these issues as it exhaustively searches through
branching and finds successful solutions in all cases. This problem sees the greatest de-

14 M.B. Fogelson et al.

crease in actuators due to the robot’s small number of DoF and a high number of initial
actuators.
Space Structure: The second task is stabilizing a multi-body flexible structure rotating
at 1 Hz in space. The dynamics of this problem are described by the following (14).
This task is challenging due to lightly damped structural vibration modes. The space
structure, seen in Fig. 3b, is described by 2 bodies connected in series by springs and
dampers, resulting in a 12 DoF system. This problem is initialized with 3 thrusters and 3
reaction wheels placed at the COM of each body, making the system fully controllable.
The CAPO formulation is similar to that stated in (17), excluding the thrust and position
limits. This small-scale problem still has around 1852 decision variables; the results are
reported in Table 2.

In this problem, CAPO is 19x faster than the MIQP, 43x faster than the GA, and
65x faster than the MINLP. The MINLP and GA find the smallest objective values;
however, CAPO finds a solution that is very close to the other methods and outperforms
the MIQP. The objective function balances minimizing the reference trajectory, actuator
effort, and the number of actuators, and the problem formulation is non-convex due
to the coupled dynamics constraint, causing local minima in the solution landscape.
Therefore, although CAPO’s solution had an average actuator reduction of 10% versus
the GA, MIQP, and MINLP solutions, which reduced the number of actuators by 25%,
this only accounts for a difference of 1-2 actuators.
Cloth Manipulation: The cloth manipulation task is to track a reference flapping mo-
tion seen in Fig. 3c. This problem can be related to coordinating robotic arms in manip-
ulating deformable objects like shirts or towels. The cloth dynamics are approximated
using the same dynamics described in (14), consisting of a series of rigid bodies con-
nected by springs and dampers representing a soft spherical joint. In the small-scale
problem, the cloth is modeled as 4 rigid bodies in a 2x2 grid. The CAPO formulation
is similar to that stated in (17), excluding the thrust and position limits. This problem
consists of 3704 decision variables, and the results are reported in Table 2.

CAPO is 7x faster on average than the MIQP formulation, 30x faster on average
than the GA, and 218x faster on average than the MINLP. This time, CAPO finds the
same objective value of the GA, and MINLP formulations and is better than the MIQP.
CAPO and GA find solutions that reduce the number of actuators by 16.7%, whereas
the MIQP finds a solution that reduces the number of actuators by 25%. MINLP finds a
solution that reduces the number of actuators by 37.5%. One possible area of discrep-
ancy with the MIQP formulation is due to the linearization of the dynamics constraints,
while the branch and bound approach enables the MINLP to get out of local minima
given sufficient time. However, it is apparent that, compared to GA, MIQP, and MINLP,
CAPO provides a comparable solution in significantly less time.
6.4 Large-Scale Problems

CAPO is demonstrated on a 120 DoF flexible space structure, a 150 DoF cloth manip-
ulation, and a 234 DoF soft robotic swimmer which the other methods failed to find a
constraint-satisfying solution within a predefined time limit of 5 hrs. These problems
use the same dynamics described in (14) and leverage the same CAPO formulation
shown in (17) excluding the thrust and actuator position limits. Each problem is ini-
tialized with 6 actuators placed at the COM of each body approximating the structure,

CAPO: Control and Actuator Placement Optimization 15

3 1-DOF force-generating actuators, and 3 1-DOF torque-generating actuators. These
large-scale problems have 18520, 21900, and 36114 decision variables, respectively.
The space structure and cloth manipulation problems were revisited using 20 bodies
and 25 bodies in a 5x5 grid, respectively. The results for CAPO on these two large-scale
tasks are reported in Table 2. The MIQP and MINLP failed to find a feasible solution
for these larger problems, and the GA failed due to memory limits. In the large space
structure task, CAPO reduces the total number of actuators by 14% and find the solu-
tion in an average time of 423 seconds (7.05 min). For the cloth manipulation, CAPO
reduces the total number of actuators by an average of 27.5% and solves in an average
time of 878 seconds (14.6 min). The actuator configurations are illustrated in Fig. 4,
where force actuators are represented by cones and torque actuators are represented by
toruses.

A soft-robotic swimmer task, which aims to achieve a reference swimming motion
seen in Fig. 3 was also solved. Soft swimmers have been an active area of research
for design optimization [22, 27, 29]. The soft-swimmer model consists of 39 bodies, 27
bodies describing the body, and 12 bodies defining the 4 flippers, resulting in a 234 DoF
model. The results seen in Table 2 show that, for the soft swimmer problem, CAPO can
reduce the total number of actuators by an average of 12% and finds a solution in an
average time of 8536 seconds (2.37 hrs). The final actuator configuration is shown in
Fig. 4. For these large-scale problems, CAPO can find reduced actuator configurations
that satisfy the problem constraints. This demonstration shows that CAPO scales well
even as the number of parameters increases significantly. The other methods either fail
to find a solution or require large computational resources that exceed the testing setup.

7 Conclusions

CAPO offers an efficient algorithm for task-driven robot design, solving high-dimensional
control-and-actuator-placement problems in complex, nonlinear systems across diverse
applications. By reformulating the NP-hard and computationally expensive MINLP for
these problems into a single-level NLP, CAPO achieves solutions 7–218 times faster
than GA, MIQP, and MINLP approaches. While CAPO excels in computational effi-
ciency, particularly for high-dimensional problems, it is less effective at finding better
local optima due to its single-point solution and projection-based approach.

There are several limitations of CAPO that the authors seek to further explore. One
key limitation is the assumption that system properties, such as mass and inertia, remain
constant. While this assumption holds for space structures and cloth manipulation, it
may not be valid for multirotor systems and other dynamic robotic platforms. Addition-
ally, CAPO’s inherent non-convexity ensures that feasible solutions are, at best, local
minima, with no guarantee of finding a global minimum. Future research will focus
on providing more rigorous guarantees and improving the algorithm’s reliability and
robustness in real-world applications. Furthermore, leveraging the sparsity structure of
the CAPO problem in customized solvers presents an opportunity for additional effi-
ciency gains.

16 M.B. Fogelson et al.

1D Force (Eg. Thruster) 1D Moment (Eg. Reaction Wheel) x dir y dir z dir

a) b) c) d)

Fig. 4. Final actuator configurations for various optimization tasks a) the multirotor flip with a
final configuration of 6 actuators placed at the extents of the body, b) 120 DoF flexible space
structure with around 100 actuators placed along the body with most of the roll reaction wheels
pruned, c) 150 DoF cloth manipulation with 105 force and moments applied to the various cloth
nodes to achieve the desired trajectory, and d) 234 DoF soft robotic swimmer with 205 actuators
along the discrete body units to enable the swimming motion. Cones represent 1-D force actua-
tors, e.g. thruster, and toruses represent moment actuators, e.g. reaction wheel. Red represents the
force/moment applied to the X-axis, Green represents the Y-axis, and Blue represents the Z-axis.

Table 2. This table presents the results from CAPO, GA, MIQP, and MINLP on 3 low dimen-
sional optimization tasks and 3 high dimensional optimization tasks. The table presents each
method’s average objective value, constraint violation, runtime, percent actuator reduction, and
trial success across 5 trials. The standard deviation is presented below in parentheses. The algo-
rithm with the best performance in a particular category are highlighted in Bold. CAPO was the
only method that successfully solved the high-dimensional tasks.

Low
Dim.
Tasks

AVG
(STD)

CAPO
(ours) GA MIQP MINLP

High
Dim.
Tasks

AVG
(STD)

CAPO
(ours) GA MIQP MINLP

Multi-
rotor

(6 DoF)

Obj.
Value

1.07e8
(7.3e5)

1.54e8
(-) -

1.06e8
(2.5e5)

Space
Struct.

(120 DoF)

Obj.
Value

1.47e7
(31.3) - - -

Const.
Viol.

1.96e-8
(1.8e-8)

2.60e-9
(-) -

6.37e-9
(9.8e-9)

Const.
Viol.

1.33e-14
(0.0) - - -

Runtime
[sec]

417.14
(116.27)

2996.14
(-) -

1065.59
(514.56)

Runtime
[sec]

423.0
(66.7) - - -

Actuator
Reduct.

65%
(3.6%)

12%
(-) -

66.25%
(3.4%)

Actuator
Reduct.

14%
(0.3%) - - -

Trial
Success 3/5 1/5 0/5 5/5 Trial

Success 5/5 0/5 0/5 0/5

Space
Struct.

(12 DoF)

Obj.
Value

2.710e4
(0.056)

2.708e4
(0.0

1.620e5
(0.0)

2.708e4
(0.0)

Cloth
Manip.

(150 DoF)

Obj.
Value

9.61e5
(13.2) - - -

Const.
Viol.

3.11e-14
(0.0)

1.03e-13
(0.0)

0.001
(0.0)

8.88e-16
(0.0)

Const.
Viol.

9.7e-13
(0.0) - - -

Runtime
[sec]

4.059
(1.2)

174.61
(31.23)

76.27
(6.55)

266.5
(133.10)

Runtime
[sec]

878.0
(111.7) - - -

Actuator
Reduct.

10%
(3.7%)

25%
(0.0%)

25%
(0.0%)

25%
(0.0%)

Actuator
Reduct.

27.5%
(0.6%) - - -

Trial
Success 5/5 5/5 5/5 5/5

Trial
Success 4/5 0/5 0/5 0/5

Cloth
Manip.

(24 DoF)

Obj.
Value

1.234e5
(0.008)

1.234e5
(0.0)

1.249e5
(0.0)

1.234e5
(0.0) Soft

Robot
Swim.

(234 DoF)

Obj.
Value

9.0e3
(46.6) - - -

Const.
Viol.

4.88e-13
(0.0)

2.54e-14
(0.0)

0.0026
(0.0)

1.2e-9
(1.6e-09)

Const.
Viol.

8.54e-13
(0.0) - - -

Runtime
[sec]

15.4
(2.32)

473.1
(1.8)

108.12
(1.81)

3370.0
(940.0)

Runtime
[sec]

8536.1
(5764.55) - - -

Actuator
Reduct.

16.7%
(0.0%)

16.7%
(0.0%)

25%
(0.0%)

37.5%
(0.0%)

Actuator
Reduct.

12%
(2%) - - -

Trial
Success 5/5 5/5 5/5 5/5

Trial
Success 5/5 0/5 0/5 0/5

CAPO: Control and Actuator Placement Optimization 17

Acknowledgments. This work was supported by a NIAC award from NASA’s Space Technol-
ogy Mission Directorate (Grant Number 80NSSC21K0446). Tools like ChatGPT and Grammarly
were used for general editing and grammar enhancement.

Disclosure of Interests. The authors have filed for a provisional patent (docket no. 2024-220)
on the method described in this paper.

References

1. A. Kuntz, C. Bowen, C. Baykal, A. W. Mahoney, P. L. Anderson, F. Maldonado,
R. J. Webster, R. Alterovitz: Kinematic Design Optimization of a Parallel Surgical
Robot to Maximize Anatomical Visibility via Motion Planning. In: 2018 IEEE Inter-
national Conference on Robotics and Automation (ICRA). pp. 926–933 (May 2018).
https://doi.org/10.1109/ICRA.2018.8461135, journal Abbreviation: 2018 IEEE International
Conference on Robotics and Automation (ICRA)

2. Anonymous: Leaps, Bounds, and Backflips, https://bostondynamics.com/blog/leaps-bounds-
and-backflips/

3. Baykal, C., Bowen, C., Alterovitz, R.: Asymptotically optimal kinematic design
of robots using motion planning. Autonomous Robots 43(2), 345–357 (Feb 2019).
https://doi.org/10.1007/s10514-018-9766-x, https://doi.org/10.1007/s10514-018-9766-x

4. Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: A fresh approach to numerical
computing. SIAM review 59(1), 65–98 (2017), https://doi.org/10.1137/141000671

5. Bhatia, J.S., Jackson, H., Tian, Y., Xu, J., Matusik, W.: Evolution gym: A large-scale bench-
mark for evolving soft robots. Advances in Neural Information Processing Systems 34,
2201–2214 (12 2021), http://evogym.csail.mit.edu.

6. Bruant, I., Gallimard, L., Nikoukar, S.: Optimal piezoelectric actuator and sensor loca-
tion for active vibration control, using genetic algorithm. Journal of Sound and Vibra-
tion 329(10), 1615–1635 (2010). https://doi.org/https://doi.org/10.1016/j.jsv.2009.12.001,
https://www.sciencedirect.com/science/article/pii/S0022460X09009869

7. C. Bergeles, A. H. Gosline, N. V. Vasilyev, P. J. Codd, P. J. del Nido, P.
E. Dupont: Concentric Tube Robot Design and Optimization Based on Task and
Anatomical Constraints. IEEE Transactions on Robotics 31(1), 67–84 (Feb 2015).
https://doi.org/10.1109/TRO.2014.2378431

8. Candès, E.: Mathematics of sparsity (and a few other things). Proceedings of the International
Congress of Mathematicians pp. 235–258 (2014)

9. Chanekar, P.V., Chopra, N., Azarm, S.: Optimal actuator placement for linear systems with
limited number of actuators. Proceedings of the American Control Conference pp. 334–339
(6 2017). https://doi.org/10.23919/ACC.2017.7962975

10. Deenen, D.A., Sebeke, L.C., de Jager, B., Heijman, E., Grüll, H., Heemels, W.P.M.H.: Target-
conformal optimization-based actuator placement for ultrasound-mediated hyperthermia in
cancer treatments. IEEE Transactions on Control Systems Technology 31(4), 1926–1933
(2023). https://doi.org/10.1109/TCST.2023.3245336

11. Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least angle regression. The Annals of
Statistics 32(2), 407 – 499 (2004). https://doi.org/10.1214/009053604000000067

12. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2023),
https://www.gurobi.com

13. Ha, S., Coros, S., Alspach, A., Bern, J.M., Kim, J., Yamane, K.: Computational design of
robotic devices from high-level motion specifications. IEEE Transactions on Robotics 34(5),
1240–1251 (2018). https://doi.org/10.1109/TRO.2018.2830419

18 M.B. Fogelson et al.

14. Hargraves, C., Paris, S.: Direct trajectory optimization using nonlinear programming
and collocation. Journal of Guidance, Control, and Dynamics 10(4), 338–342 (1987).
https://doi.org/10.2514/3.20223

15. Hu, Q., Zhang, J.: Placement optimization of actuators and sensors for gyroelastic
body. Advances in Mechanical Engineering 7(3), 1687814015573765 (Mar 2015).
https://doi.org/10.1177/1687814015573765, https://doi.org/10.1177/1687814015573765,
publisher: SAGE Publications

16. Huangfu, Q., Hall, J.A.J.: Parallelizing the dual revised simplex method. Mathematical Pro-
gramming Computation 10(1), 119–142 (Mar 2018). https://doi.org/10.1007/s12532-017-
0130-5

17. J. -T. Lin, C. Girerd, J. Yan, J. T. Hwang, T. K. Morimoto: A Generalized Framework for
Concentric Tube Robot Design Using Gradient-Based Optimization. IEEE Transactions on
Robotics 38(6), 3774–3791 (Dec 2022). https://doi.org/10.1109/TRO.2022.3180627

18. Kröger, O., Coffrin, C., Hijazi, H., Nagarajan, H.: Juniper: An open-source nonlinear branch-
and-bound solver in julia. In: van Hoeve, W.J. (ed.) Integration of Constraint Programming,
Artificial Intelligence, and Operations Research. pp. 377–386. Springer International Pub-
lishing, Cham (2018), https://doi.org/10.1007/978-3-319-93031-2_27

19. Kronqvist, J., Bernal, D.E., Lundell, A., Grossmann, I.E.: A review and comparison of
solvers for convex MINLP. Optimization and Engineering 20(2), 397–455 (Jun 2019).
https://doi.org/10.1007/s11081-018-9411-8

20. Kuhn, H.W., Tucker, A.W.: Nonlinear programming. Proceedings of the Second Berkeley
Symposium on Mathematical Statistics and Probability pp. 481–492 (1950)

21. Land, A.H., Doig, A.G.: An Automatic Method of Solving Discrete Program-
ming Problems. Econometrica 28(3), 497 (Jul 1960). https://doi.org/10.2307/1910129,
https://www.jstor.org/stable/1910129?origin=crossref

22. Lee, J.H., Michelis, M.Y., Katzschmann, R., Manchester, Z.: Aquarium: A fully differen-
tiable fluid-structure interaction solver for robotics applications. In: IEEE International Con-
ference on Robotics and Automation (2023), https://doi.org/10.48550/arXiv.2301.07028

23. M. Borairi, M. Soufian: Optimal actuator\sensor placement and controller de-
sign for large flexible space structures and robotics. In: 2017 IEEE 26th Inter-
national Symposium on Industrial Electronics (ISIE). pp. 1398–1403 (Jun 2017).
https://doi.org/10.1109/ISIE.2017.8001450, journal Abbreviation: 2017 IEEE 26th Interna-
tional Symposium on Industrial Electronics (ISIE)

24. Molter, A., da Silveira, O.A.A., Fonseca, J.S.O., Bottega, V.: Simultaneous Piezoelectric Ac-
tuator and Sensor Placement Optimization and Control Design of Manipulators with Flex-
ible Links Using SDRE Method. Mathematical Problems in Engineering 2010(1), 362437
(Jan 2010). https://doi.org/10.1155/2010/362437, https://doi.org/10.1155/2010/362437, pub-
lisher: John Wiley & Sons, Ltd

25. Morimoto, T.K., Greer, J.D., Hawkes, E.W., Hsieh, M.H., Okamura, A.M.: Toward
the Design of Personalized Continuum Surgical Robots. Annals of Biomedical En-
gineering 46(10), 1522–1533 (Oct 2018). https://doi.org/10.1007/s10439-018-2062-2,
https://doi.org/10.1007/s10439-018-2062-2

26. Nagarajan, H., Lu, M., Wang, S., Bent, R., Sundar, K.: An adaptive, multivariate partitioning
algorithm for global optimization of nonconvex programs. Journal of Global Optimization
(2019). https://doi.org/10.1007/s10898-018-00734-1

27. Nava, E., Zhang, J.Z., Michelis, M.Y., Du, T., Ma, P., Grewe, B.F., Matusik, W.,
Katzschmann, R.K.: Fast aquatic swimmer optimization with differentiable projective dy-
namics and neural network hydrodynamic models. In: Chaudhuri, K., Jegelka, S., Song, L.,
Szepesvari, C., Niu, G., Sabato, S. (eds.) Proceedings of the 39th International Conference on
Machine Learning. Proceedings of Machine Learning Research, vol. 162, pp. 16413–16427.
PMLR (17–23 Jul 2022), https://proceedings.mlr.press/v162/nava22a.html

CAPO: Control and Actuator Placement Optimization 19

28. Olshevsky, A.: Minimal controllability problems. IEEE Transactions on Control of Network
Systems 1(3), 249–258 (2014). https://doi.org/10.1109/TCNS.2014.2337974

29. Patel, D.K., Huang, X., Luo, Y., Mungekar, M., Jawed, M.K., Yao, L., Majidi, C.: Highly dy-
namic bistable soft actuator for reconfigurable multimodal soft robots. Advanced Materials
Technologies 8(2), 2201259 (2023). https://doi.org/https://doi.org/10.1002/admt.202201259,
https://onlinelibrary.wiley.com/doi/abs/10.1002/admt.202201259

30. Rao, S.S., Pan, T.S., Venkayya, V.B.: Optimal placement of actuators in actively
controlled structures using genetic algorithms. AIAA journal 29, 942–943 (5 1991).
https://doi.org/10.2514/3.10683, https://arc.aiaa.org/doi/10.2514/3.10683

31. S. Niyaz, A. Kuntz, O. Salzman, R. Alterovitz, S. S. Srinivasa: optimizing Motion-Planning
Problem Setup via Bounded Evaluation with Application to Following Surgical Trajectories.
In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). pp.
1355–1362 (Nov 2019). https://doi.org/10.1109/IROS40897.2019.8968575, journal Abbre-
viation: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

32. Santosa, F., Symes, W.W.: Linear inversion of band-limited reflection seismograms.
SIAM Journal on Scientific and Statistical Computing 7(4), 1307–1330 (1986).
https://doi.org/10.1137/0907087

33. Seifried, R.: Two approaches for feedforward control and optimal de-
sign of underactuated multibody systems. Multibody System Dynamics
27, 75–93 (1 2012). https://doi.org/10.1007/S11044-011-9261-Z/METRICS,
https://link.springer.com/article/10.1007/s11044-011-9261-z

34. Skouras, M., Thomaszewski, B., Coros, S., Bickel, B., Gross, M.: Com-
putational design of actuated deformable characters. ACM Transactions
on Graphics (TOG) 32 (7 2013). https://doi.org/10.1145/2461912.2461979,
https://dl.acm.org/doi/10.1145/2461912.2461979

35. Spielberg, A., Araki, B., Sung, C., Tedrake, R., Rus, D.: Functional co-optimization of ar-
ticulated robots. Proceedings - IEEE International Conference on Robotics and Automation
pp. 5035–5042 (7 2017). https://doi.org/10.1109/ICRA.2017.7989587

36. T. Anor, J. R. Madsen, P. Dupont: Algorithms for design of continuum robots us-
ing the concentric tubes approach: A neurosurgical example. In: 2011 IEEE In-
ternational Conference on Robotics and Automation. pp. 667–673 (May 2011).
https://doi.org/10.1109/ICRA.2011.5980311, journal Abbreviation: 2011 IEEE International
Conference on Robotics and Automation

37. Tibshirani, R.: Regression Shrinkage and Selection Via the Lasso. Journal of the
Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (12 2018).
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x

38. wildart: Evolutionary.jl. https://github.com/wildart/Evolutionary.jl (2022)
39. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-

search algorithm for large-scale nonlinear programming. Mathematical Program-
ming 106, 25–57 (5 2006). https://doi.org/10.1007/S10107-004-0559-Y/METRICS,
https://link.springer.com/article/10.1007/s10107-004-0559-y

40. Yuan, G., Ghanem, B.: Binary optimization via mathematical program-
ming with equilibrium constraints. arXiv: Optimization and Control (2016),
https://api.semanticscholar.org/CorpusID:54069864

41. Zhao, A., Xu, J., Konaković-Luković, M., Hughes, J., Spielberg, A., Rus, D.,
Matusik, W.: Robogrammar: Graph grammar for terrain-optimized robot design.
ACM Trans. Graph 39, 16 (2020). https://doi.org/10.1145/3414685.3417831,
https://doi.org/10.1145/3414685.3417831

42. Zou, H., Hastie, T.: Regularization and Variable Selection Via the Elastic Net. Journal of
the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (03 2005).
https://doi.org/10.1111/j.1467-9868.2005.00503.x

