
ALGAMES: A Fast Solver for Constrained
Dynamic Games

Simon Le Cleac’h
Department of Mechanical Engineering

Stanford University
simonlc@stanford.edu

Mac Schwager
Department of Aeronautics

& Astronautics
Stanford University

schwager@stanford.edu

Zachary Manchester
Department of Aeronautics

& Astronautics
Stanford University

zacmanchester@stanford.edu

Abstract—Dynamic games are an effective paradigm for deal-
ing with the control of multiple interacting actors. This paper
introduces ALGAMES (Augmented Lagrangian GAME-theoretic
Solver), a solver that handles trajectory optimization problems
with multiple actors and general nonlinear state and input
constraints. Its novelty resides in satisfying the first order opti-
mality conditions with a quasi-Newton root-finding algorithm and
rigorously enforcing constraints using an augmented Lagrangian
formulation. We evaluate our solver in the context of autonomous
driving on scenarios with a strong level of interactions between
the vehicles. We assess the robustness of the solver using Monte
Carlo simulations. It is able to reliably solve complex problems
like ramp merging with three vehicles three times faster than a
state-of-the-art DDP-based approach. A model predictive control
(MPC) implementation of the algorithm, running at more than
60Hz, demonstrates ALGAMES’ ability to mitigate the “frozen
robot” problem on complex autonomous driving scenarios like
merging onto a crowded highway.

I. INTRODUCTION

Controlling a robot in an environment where it interacts
with other agents is a complex task. Traditional approaches
in the literature adopt a predict-then-plan architecture. First,
predictions of other agents’ trajectories are computed, then
they are fed into a planner that considers them as immutable
obstacles. This approach is limiting because the effect of the
robot’s trajectory on the other agents is ignored. Moreover,
it can lead to the “frozen robot” problem that arises when
the planner finds that all paths to the goal are unsafe [1].
It is, therefore, crucial for a robot to simultaneously predict
the trajectories of other vehicles on the road while planning
its own trajectory, in order to capture the reactive nature
of all the agents in the scene. ALGAMES provides such
a joint trajectory predictor and planner by considering all
agents as players in a Nash-style dynamic game. We envision
ALGAMES being run on-line by a robot in a receding-horizon
loop, at each iteration planning a trajectory for the robot by
explicitly accounting for the reactive nature of all agents in its
vicinity.

Joint trajectory prediction and planning in scenarios with
multiple interacting agents is well-described by a dynamic
game. Dealing with the game-theoretic aspect of multi-agent
planning problems is a critical issue that has a broad range
of applications. For instance, in autonomous driving, ramp
merging, lane changing, intersection crossing, and overtaking
maneuvers all comprise some degree of game-theoretic inter-
actions [2, 3, 4, 5, 6, 7]. Other potential applications include

Fig. 1. A merging maneuver on a crowded highway is carried out using
a receding horizon implementation of ALGAMES. On the left, the red car
controlled by ALGAMES merges between the orange and green cars with
minimal disruption to the traffic. On the right, the red car controlled by a non
game-theoretic MPC, is “frozen” i.e., it cannot find a feasible path. It has to
slow down significantly and wait for the three cars to pass before merging.

mobile robots navigating in crowds, like package delivery
robots, tour guides, or domestic robots; robots interacting with
people in factories, such as mobile robots or fixed-base multi-
link manipulators; and competitive settings like drone and car
racing [8, 9].

In this work, we seek solutions to constrained multi-player
general-sum dynamic games. In dynamic games, the players’
strategies are sequences of decisions. It is important to notice
that, unlike traditional optimization problems, non-cooperative
games have no “optimal” solution. Depending on the structure
of the game, asymmetry between players, etc., different con-
cepts of solutions are possible. In this work, we search for
Nash equilibrium solutions. This type of equilibrium models
symmetry between the players; All players are treated equally.
At such equilibria, no player can reduce its cost by unilaterally
changing its strategy. For extensive details about the game-
theory concepts addressed in this paper, we refer readers to
the work of Bressan [10] and Basar et al. [11].

Our solver is aimed at finding a Nash equilibrium for
multi-player dynamic games, and can handle general nonlinear
state and input constraints. This is particularly important for
robotic applications, where the agents often interact through
their desire to avoid collisions with one another or with the
environment. Such interactions are most naturally represented

as (typically nonlinear) state constraints. This is a crucial fea-
ture that sets game-theoretic methods for robotics apart from
game-theoretic methods in other domains, such as economics,
behavioral sciences, and robust control. In these domains, the
agent interactions are traditionally represented in the objective
functions themselves, and these games typically have no state
or input constraints. In mathematics literature, Nash equilibria
with constraints are referred to as Generalized Nash Equilibria
[12]. Hence, in this paper we present an augmented Lagrangian
solver for finding Generalized Nash Equilibria specifically
tailored to robotics applications.

Our solver assumes that players are rational agents acting
to minimize their costs. This rational behavior is formulated
using the first-order necessary conditions for Nash equilib-
ria, analogous to the Karush-Kuhn-Tucker (KKT) conditions
in optimization. By relying on an augmented Lagrangian
approach to handle constraints, the solver is able to solve
multi-player games with several agents and a high level of
interactions at real-time speeds. Finding a Nash equilibrium
for 3 autonomous cars in a freeway merging scenario takes 90
ms. Our primary contributions are:

1) A general solver for dynamic games aimed at identifying
Generalized Nash Equilibrium strategies.

2) A real time MPC implementation of the solver mitigat-
ing the “frozen robot” problem that arises in complex
driving scenarios for non-game-theoretic MPC approach.
(Fig. 1).

3) A comparison with iLQGames [4]. ALGAMES finds
Nash equilibria 3 times faster than iLQGames for a fixed
constraint satisfaction criterion.

II. RELATED WORK

A. Equilibrium Selection

Recent work focused on solving multi-player dynamic
games can be categorized by the type of equilibrium they
select. Several works [2, 3, 9, 13] have opted to search
for Stackelberg equilibria, which model an asymmetry of
information between players. These approaches are usually
formulated for games with two players, a leader and a follower.
The leader chooses its strategy first, then the follower selects
the best response to the leader’s strategy. Alternatively, a Nash
equilibrium does not introduce hierarchy between players;
each player’s strategy is the best response to the other players’
strategies. As pointed out in [6], searching for open-loop
Stackelberg equilibrium strategies can fail on simple examples.
In the context of autonomous driving, for instance, when
players’ cost functions only depend on their own state and
control trajectories, the solution becomes trivial. The leader
ignores mutual collision constraints and the follower has to
adapt to this strategy. This behavior can be overly aggressive
for the leader (or overly passive for the follower) and does not
capture the game-theoretic nature of the problem (see Figure
2).

Nash equilibria have been investigated in [4, 5, 8, 14, 15,
16, 17]. We also take the approach of searching for Nash

Fig. 2. Superimposed sequence of images depicting the trajectories obtained
by solving for open-loop Stackelberg equilibrium strategies. The slow blue
vehicle is the leader and cuts in front of the the fast orange vehicle, which
is the follower. This example illustrates the fact that the leader always has
the “right of way” over the follower in any situation. The Nash equilibrium
strategy for this scenario lets the orange car cross the intersection first.

equilibria, as this type of equilibrium seems better suited
to symmetric, multi-robot interaction scenarios. Indeed, we
have observed more natural behavior emerging from Nash
equilibria compared to Stackelberg when solving for open-
loop strategies.

B. Game-Theoretic Trajectory Optimization

Most of the algorithms proposed in the robotics literature to
solve for game-theoretic equilibria can be grouped into four
types: First are algorithms aimed at finding Nash equilibria
that rely on decomposition, such as Jacobi or Gauss-Siedel
methods [8, 14, 18]. These algorithms are based on an iterative
best response scheme in which players take turns at improving
their strategies considering the other agents’ strategies as
immutable. This type of approach is easy to interpret and
scales reasonably well with the number of players. However,
convergence of these algorithms is not well understood [12],
and special care is required to capture the game-theoretic
nature of the problem [8]. Moreover, solving for a Nash
equilibrium until convergence can require many iterations,
each of which is a (possibly expensive) trajectory optimization
problem. This can lead to prohibitively long solution times.

Second, there are a variety of algorithms based on dynamic
programming. In [6], a Markovian Stackelberg strategy is
computed via dynamic programming. This approach seems
to capture the game-theoretic nature of autonomous driving.
However, dynamic programming suffers from the curse of
dimensionality and, therefore, practical implementations rely
on simplified dynamics models coupled with coarse discretiza-
tion of the state and input spaces. To counterbalance these
approximations, a lower-level planner informed by the state
values under the Markovian Stackelberg strategy is run. This
approach, which scales exponentially with the state dimension,
has only been demonstrated in a two-player setting. Adding
more players is likely to prevent real-time application of
this algorithm. In contrast, our proposed approach scales
polynomially with the number of players (see Section IV-E).

Third, algorithms akin to differential dynamic programming
have been developed for robust control [19] and later applied
to game-theoretic problems [4, 15]. This approach scales
polynomially with the number of players and is fast enough
to run real-time in a model-predictive control (MPC) fashion
[4]. However, contrary to ALGAMES, this type of approach
does not natively handle constraints. Collision-avoidance con-

straints are typically handled using large penalties that can
result in numerical ill-conditioning which, in turn, can impact
the robustness or the convergence rate of the solver. More-
over, it leads to a trade-off between trajectory efficiency and
avoiding collisions with other players.

Finally, algorithms that are analogous to direct methods in
trajectory optimization have also been developed [16, 17]. An
algorithm based on a first-order splitting method was proposed
by Di [17] that is known to have a linear convergence rate.
Di’s experiments show convergence of the algorithm after
typically 103 to 104 iterations. A different approach based on
Newton’s method has been proposed [16], but it is restricted
to unconstrained dynamic games. Our solver belongs to this
family of approaches. It also relies on a second-order Newton-
type method, but it is able to handle general state and control
input constraints. In addition, we demonstrate convergence
on relatively complex problems in typically less than 102

iterations.

C. Generalized Nash Equilibrium Problems

We focus on finding Nash equilibria for multi-player games
in which players are coupled through shared state con-
straints (such as collision-avoidance). Therefore, these prob-
lems are instances of Generalized Nash Equilibrium Problems
(GNEPs). The operations research field has a rich literature
on GNEPs [20, 21, 22, 23, 24]. Exact penalty methods have
been proposed to solve GNEPs [21, 22]. Complex constraints
such as those that couple players’ strategies are handled using
penalties, allowing solution of multi-player games jointly for
all the players. However, these exact penalty methods require
minimization of nonsmooth objective functions, which leads
to slow convergence rates in practice.

In the same vein, a penalty approach relying on an aug-
mented Lagrangian formulation of the problem has been
advanced by Pang et al. [20]. This work, however, converts
the augmented Lagrangian formulation to a set of KKT con-
ditions, including complementarity constraints. The resulting
constraint-satisfaction problem is solved with an off-the-shelf
linear complementarity problem (LCP) solver that exploits
the linearity of a specific problem. Our solver, in contrast,
is not tailored for a specific example and can solve general
GNEPs. It draws inspiration from the augmented Lagrangian
formulation, which does not introduce nonsmooth terms in
the objective function, enabling fast convergence. Moreover,
this formulation avoids ill-conditioning, which improves the
numerical robustness of our solver.

III. PROBLEM STATEMENT

In the discretized trajectory optimization setting with N time
steps, we denote by n the state size, m the control input size,
xν

k the state, and uν
k the control input of player ν at the time

step k. In formulating the game, we do not distinguish between
the robot carrying out the computation, and the other agents
whose trajectories it is predicting. All agents are modeled
equivalently, as is typical in the case of Nash style games.

Following the formalism of Facchinei [12], we consider
the GNEP with M players. Each player ν decides over its
control input variables Uν = [(uν

1)
T . . .(uν

N−1)
T]T ∈Rm̄ν

. This
is player ν’s strategy where mν denotes the dimension of the
control inputs controlled by player ν and m̄ν = mν(N−1) is
the dimension of the whole trajectory of player ν’s control
inputs. By U−ν , we denote the vector of all the players’
strategies except the one of player ν . Additionally, we define
the trajectory of state variables X = [(x2)

T . . .(xN)
T]T ∈ Rn̄

where n̄= n(N−1), which results from applying all the control
inputs decided by the players to a joint dynamical system,

xk+1 = f (xk,u1
k , . . . ,u

M
k) = f (xk,uk), (1)

with k denoting the time-step index. The kinodynamic con-
straints over the whole trajectory can be expressed with n̄
equality constraints,

D(X ,U1, . . . ,UM) = D(X ,U) = 0 ∈ Rn̄. (2)

The cost function of each player is noted Jν(X ,Uν) :Rn̄+m̄ν →
R. It depends on player ν’s control inputs Uν as well as
on the state trajectory X , which is shared with all the other
players. The goal of player ν is to select a strategy Uν

and a state trajectory X that minimizes the cost function Jν .
Naturally, the choice of state trajectory X is constrained by the
other players’ strategies U−ν and the dynamics of the system
via Equation 2. In addition, the strategy Uν must respect a
set of constraints that depends on the state trajectory X as
well as on the other players strategies U−ν (e.g., collision-
avoidance constraints). We express this with a concatenated
set of inequality constraints C : Rn̄+m̄→ Rnc . Formally,

min
X ,Uν

Jν(X ,Uν),

s.t. D(X ,U) = 0,
C(X ,U)≤ 0.

(3)

The set of M Problems (3), forms a GNEP because of the
constraints that couple the strategies of all the players. A
solution of this GNEP (a generalized Nash equilibrium), is
a vector Û such that, for all ν = 1, . . . ,M, Ûν is a solution to
(3) with the other players’ strategies fixed to Û−ν . This means
that at an equilibrium point Û , no player can decrease their
cost by unilaterally changing their strategy Uν to any other
feasible point.

When solving for a generalized Nash equilibrium of the
game, U , we identify open-loop Nash equilibrium trajectories,
in the sense that the whole trajectory Uν is the best response
to the other players’ strategies U−ν given the initial state of
the system x0. Thus, the control signal is a function of time,
not of the current state of the system1 xk. However, one can
repeatedly resolve the open-loop game as new information is
obtained over time to obtain a policy that is closed-loop in
the model-predictive control sense, as demonstrated in Section

1One might also explore solving for feedback Nash equilibria, where the
strategies are functions of the state of all agents. This is an interesting direction
for future work.

VII. This formulation is general enough to comprise multi-
player general-sum dynamic games with nonlinear constraints
on the states and control inputs. Practically, in the context
of autonomous driving, the cost function Jν encodes the
objective of player ν , while the concatenated set of constraints
C includes collision constraints coupled between players. We
assume differentiability of the constraints and twice differen-
tiability of the cost functions.

IV. AUGMENTED LAGRANGIAN FORMULATION

We propose an algorithm to solve the previously defined
GNEP in the context of trajectory optimization. We express
the condition that players are acting optimally to minimize
their cost functions subject to constraints as an equality. To
do so, we first derive the augmented Lagrangian associated
with (3) solved by each player. Then, we use the fact that, at
an optimal point, the gradient of the augmented Lagrangian is
null [25]. Therefore, at a generalized Nash equilibrium point,
the gradients of the augmented Lagrangians of all players must
be null. Concatenating this set of M equality constraints with
the dynamics equality constraints, we obtain a set of equations
that we solve using a quasi-Newton root-finding algorithm.

A. Individual Optimality

First, without loss of generality, we suppose that the vector
C is actually the concatenated set of inequality and equality
constraints, i.e., C = [CT

i CT
e]

T ∈ Rnci+nce , where Ci ≤ 0 is the
vector of inequality constraints and Ce = 0 is the vector of
equality constraints. To embed the notion that each player
is acting optimally, we formulate the augmented Lagrangian
associated with (3) for player ν . The dynamics constraints are
handled with the Lagrange multiplier term µν ∈Rn̄, while the
other constraints are dealt with using both a multiplier and a
quadratic penalty term specific to the augmented Lagrangian
formulation. As a motivation for this differential treatment;
one typically handles inequality and highly nonlinear equality
constraints with an augmented Lagrangian formulation for its
improved robustness. We denote by λ ∈ Rnc the Lagrange
multipliers associated with the vector of constraints C; ρ ∈Rnc

is a penalty weight;

Lν(X ,U) = Jν +µ
ν T D+λ

TC+
1
2

CT IρC. (4)

Iρ is a diagonal matrix defined as,

Iρ,kk =

{
0 if Ck(X ,U)< 0 ∧ λk = 0, k ≤ nci,

ρk otherwise,
(5)

where k = 1, . . . ,nci + nce indicates the kth constraint. It is
important to notice that the Lagrange multipliers µν associated
with the dynamics constraints are specific to each player ν , but
the Lagrange multipliers and penalties λ and ρ are common
to all players. Given the appropriate Lagrange multipliers µν

and λ , the gradient of the augmented Lagrangian with respect
to the individual decision variables ∇X ,Uν Lν =Gν is null at an
optimal point of (3). The fact that player ν is acting optimally

to minimize Jν under the constraints D and C can therefore
be expressed as follows,

∇X ,Uν Lν(X ,U,µν) = Gν(X ,U,µν) = 0. (6)

It is important to note that this equality constraint preserves
coupling between players since the gradient Gν depends on
the other players’ strategies U−ν .

B. Root-Finding Problem

At a generalized Nash equilibrium, all players are acting op-
timally and the dynamics constraints are respected. Therefore,
to find an equilibrium point, we have to solve the following
root-finding problem,

min
X ,U,µ

0,

s.t. Gν(X ,U,µν) = 0, ∀ ν ∈ {1, . . . ,M},
D(X ,U) = 0,

(7)

We use Newton’s method to solve the root-finding prob-
lem. We denote by G the concatenation of the augmented
Lagrangian gradients of all players and the dynamics con-
straints, G(X ,U,µ) = [(G1)T , . . . ,(GM)T ,DT]T , where µ =
[(µ1)T , . . . ,(µM)T]T ∈Rn̄M . We compute the first-order deriva-
tive of G with respect to the primal variables X ,U and
the dual variables µ that we concatenate in a single vector
y = [(X)T ,(U)T ,(µ)T],

H = ∇X ,U,µ G = ∇yG. (8)

Newton’s method allows us to identify a search direction δy
in the primal-dual space,

δy =−H−1G. (9)

We couple this search direction with a backtracking line-search
[26] given in Algorithm 1 to ensure local convergence to a
solution using Newton’s Method [26] detailed in Algorithm 2.

Algorithm 1 Backtracking line-search
1: procedure LINESEARCH(y,G,δy)
2: Parameters
3: α = 1,
4: β ∈ (0,1/2),
5: τ ∈ (0,1),
6: Until ||G(y+αδy)||1 < (1−αβ)||G(y)||1 do
7: α ← τα

8: return α

Algorithm 2 Newton’s method for root-finding problem
1: procedure NEWTON’SMETHOD(y)
2: Until Convergence do
3: G← [(∇X ,U1 L1)T , . . . ,(∇X ,UM LM)T ,DT]T

4: H← ∇yG
5: δy←−H−1G
6: α ← LINESEARCH(y,G,δy)
7: y← y+αδy
8: return y

Algorithm 3 ALGAMES solver
1: procedure ALGAMES(y0,ρ0)
2: Initialization
3: ρ ← ρ(0),
4: λ ← 0,
5: µν ← 0, ∀ν
6: X ,U ← X (0),U (0)

7: Until Convergence do
8: y← NEWTON’SMETHOD(y)
9: λ ← DUALASCENT(y,λ ,ρ), . Equation 10

10: ρ ← INCREASINGSCHEDULE(ρ), . Equation 11
11: return y

C. Augmented Lagrangian Updates

To obtain convergence of the Lagrange multipliers λ , we
update them with a dual-ascent step. This update can be seen
as shifting the value of the penalty terms into the Lagrange
multiplier terms,

λk←

{
max(0,λk +ρkCk(X ,U)) k ≤ nci,

λk +ρkCk(X ,U) nci < k ≤ nci +nce.
(10)

We also update the penalty weights according to an increasing
schedule, with γ > 1:

ρk← γρk, ∀k ∈ {1, . . . ,nc}. (11)

D. ALGAMES

By combining Newton’s method for finding the point where
the dynamics is respected and the gradients of the augmented
Lagrangians are null with the Lagrange multiplier and penalty
updates, we obtain our solver ALGAMES (Augmented La-
grangian GAME-theoretic Solver) presented in Algorithm 3.
The algorithm, which iteratively solves the GNEP, requires as
inputs an initial guess for the primal-dual variables y(0) and
initial penalty weights ρ(0). The algorithm outputs the open-
loop strategies of all players X ,U and the Lagrange multipliers
associated with the dynamics constraints µ .

E. Algorithm Complexity

Following a quasi-Newton approximation of the matrix H
[26], we neglect some of the second-order derivative terms
associated with the constraints. Therefore, the most expensive
part of the algorithm is the Newton step defined by Equation
9. By exploiting the sparsity pattern of the matrix H, we
can solve Equation 9 in O(N(n+m)3). Indeed, the sparsity
structure allows us to perform a back-substitution scheme akin
to solving a Riccati equation, which has known complexity
of O(N(n + m)3). The complexity is cubic in the number
of states n and the number of control inputs m, which are
typically linear in the number of players M. Therefore, the
overall complexity of the algorithm is O(NM3).

F. Algorithm Discussion

Here we discuss the inherent difficulty in solving for
Nash equilibria in large problems, and explain some of the
limitations of our approach. First of all, finding a Nash
equilibrium is a non-convex problem in general. Indeed, it
is known that even for single-shot discrete games, solving for
exact Nash equilibria is computationally intractable for a large
number of players [27]. It is therefore not surprising that, in
our more difficult setting of a dynamic game in continuous
space, no guarantees can be provided about finding an exact
Nash equilibrium. Furthermore, in complex interaction spaces,
constraints can be highly nonlinear and nonconvex. This is
the case in the autonomous driving context with collision
avoidance constraints. In this setting, one cannot expect to find
an algorithm working in polynomial time with guaranteed con-
vergence to a Nash equilibrium respecting constraints. On the
other hand, local convergence of Newton’s method to open-
loop Nash equilibria has been established in the unconstrained
case (that is, starting sufficiently close to the equilibrium,
the algorithm will converge to it) [16]. Our approach solves
a sequence of unconstrained problems via the augmented
Lagrangian formulation. Each of these problems, therefore,
has guaranteed local convergence. However, as expected, the
overall method has no guarantee of global convergence to a
generalized Nash equilibrium.

Second, our algorithm requires an initial guess for the
state and control input trajectories X , U and the dynamics
multipliers µ . Empirically, we observe that choosing µ = 0
and simply rolling out the dynamics starting from the initial
state x0 without any control was a sufficiently good initial
guess to get convergence to a local optimum that respects both
the constraints and the first-order optimality conditions. For a
detailed empirical study of the convergence of ALGAMES and
its failure cases, we refer to Sections VI-D and VI-E.

Finally, even for simple linear quadratic games, the Nash
equilibrium solution is not necessarily unique. In general, an
entire subspace of equilibria exists. In this case, the matrix
H in Equation 9 will be singular. In practice, we regularize
this matrix so that large steps δy are penalized, resulting in
an invertible matrix H and convergence to a Nash equilibrium
that minimizes the norm of y.

V. SIMULATIONS: DESIGN AND SETUP

We choose to apply our algorithm in the autonomous driving
context. Indeed, many maneuvers like lane changing, ramp
merging, overtaking, and intersection crossing involve a high
level of interaction between vehicles. We assume a single car
is computing the trajectories for all cars in its neighborhood, so
as to find its own trajectory to act safely among the group. We
assume that this car has access to a relatively good estimate
of the surrounding cars’ objective functions. Such an estimate
could, in principle, be obtained by applying inverse optimal
control on observed trajectories of the surrounding cars.

In a real application, the car would compute its strategy
as frequently as possible in a receding-horizon loop to adapt
to unforeseen changes in the environment. We demonstrate

the feasibility of this approach on complex driving scenarios
where a classical predict-then-plan architecture fails to over-
come the “frozen robot” problem.

A. Autonomous Driving Problem

1) Constraints: Each vehicle in the scene is an agent of the
game. Our objective is to find a generalized Nash equilibrium
trajectory for all of the vehicles. These trajectories have to be
dynamically feasible. The dynamics constraints at time step k
are expressed as follows,

xk+1 = f (xk,u1
k , . . . ,u

M
k). (12)

We consider a nonlinear unicycle model for the dynamics of
each vehicle. A vehicle state, xν

k , is composed of a 2D position,
a heading angle and a scalar velocity. The control input uν

k is
composed of an angular velocity and a scalar acceleration.

In addition, it is critical that the trajectories respect
collision-avoidance constraints. We model the collision zone
of the vehicles as circles of radius r. The collision constraints
between vehicles are then simply expressed in terms of the
position x̃ν

k of each vehicle,
r2−||x̃ν

k − x̃ν ′
k ||22 ≤ 0, ∀ ν ,ν ′ ∈ {1, . . . ,M},ν 6= ν

′. (13)

We also model boundaries of the road to force the vehicles to
remain on the roadway. This means that the distance between
the vehicle and the closest point, q, on each boundary, b, has
to remain larger than the collision circle radius, r,

r2−||x̃ν
k −qb||22 ≤ 0, ∀ b, ∀ ν ∈ {1, . . . ,M}. (14)

In summary, based on reasonable simplifying assumptions,
we have expressed the driving problem in terms of non-convex
and non-linear coupled constraints.

2) Cost Function: We use a quadratic cost function penal-
izing the use of control inputs and the distance between the
current state and the desired final state x f of the trajectory,

Jν(X ,Uν) =
N−1

∑
k=1

1
2
(xk− x f)

T Q(xk− x f)+
1
2

uν
k

T Ruν
k+ (15)

1
2
(xN− x f)

T Q f (xN− x f). (16)

This cost function only depends on the decision variables pν

of vehicle ν . Players’ behaviors are coupled only through
collision constraints. We could also add terms depending on
other vehicles’ strategies, such as a congestion penalty.

VI. COMPARISON TO ILQGAMES

A. Motivation

In order to evaluate the merits of ALGAMES, we compare it
to iLQGames [4] which is a DDP-based algorithm for solving
general dynamic games. Both algorithms solve the problem by
iteratively solving linear-quadratic approximations that have
an analytical solution [11]. For iLQGames, the augmented
objective function Ĵν differs from the objective function, Jν ,
by a quadratic term penalizing constraint violations,

Ĵν(X ,U) = Jν(X ,U)+
1
2

C(X ,U)T IρC(X ,U). (17)

Where Iρ is defined by,

Fig. 3. On the left, the three cars at their nominal initial state. On the
right, the three cars are standing at the desired final state. The green car has
successfully merged in between the two other cars. The roadway boundaries
are depicted in light blue.

Scenario # Players ALGAMES iLQGames
2 38±10ms 104±23ms

Ramp merging 3 89±14ms 197±15ms
4 860±251ms 705±209ms
2 50±11ms 752±168ms

Intersection 3 116±22ms 362±93ms
4 509±33ms 1905±498ms

Fig. 4. For each scenario and each number of players, we run each solver
100 times to estimate the mean solve time and its standard deviation.

Iρ,kk =

{
0 if Ck(X ,U)< 0, k ≤ nci,

ρk otherwise.
(18)

Here ρ is an optimization hyperparameter that we can tune to
satisfy constraints. For ALGAMES, the augmented objective
function, Lν , is actually an augmented Lagrangian, see Equa-
tion 4. The hyperparameters for ALGAMES are the initial
value of ρ(0) and its increase rate γ defined in Equation 11.

B. Timing Experiments

We evaluate the performance of both algorithms in two sce-
narios, see Figures 3 and 7, with the number of players varying
from two to four. To compare the speed of both algorithms,
we set the termination criterion as a threshold on constraint
violations C ≤ 10−3. The timing results averaged over 100
samples are presented in Table 4. First, we notice that both
algorithms achieve real-time or near-real-time performance on
complex autonomous driving scenarios (the horizon of the
solvers is fixed to 5s).

We observe that the speed performance of ALGAMES and
iLQGames are comparable in the ramp merging scenario. For
this scenario, we tuned the value of the penalty for iLQGames
to ρ = 102. Notice that for all scenarios the dimensions of the
problem are scaled so that the velocities and displacements are
all the same order of magnitude. For the intersection scenario,
we observe that the two-player and four-player cases both have
much higher solve times for iLQGames compared to the 3-
player case. Indeed, in those two cases, we had to increase
the penalty to ρ = 103, otherwise the iLQGames would plateau
and never reach the constraint satisfaction criterion. This, in
turn, slowed the algorithm down by decreasing the constraint
violation convergence rate.

C. Discussion

The main takeaway from these experiments is that, for
a given scenario, it is generally possible to find a suitable
value for ρ that will ensure the convergence of iLQGames to
constraint satisfaction. With higher values for ρ , we can reach

−6 −4 −2 0
0

100

200

Constraint Viol.: log(ε)
−6 −4 −2 0

0

200

400

Constraint Viol.: log(ε)

0 2 4 6
0

500

1,000

Solve time in s
0 2 4 6

0

200

400

Solve time in s

0 50 100 150
0

200
400
600

Solver iterations
0 50 100 150

0
100
200
300

Solver iterations
Fig. 5. Monte Carlo analysis with 1000 randomly sampled initial states of
ALGAMES on the left and iLQGames on the right. The top plots indicate
the largest constraint violation of the solution at the end of the solve, ε ≥ 0
(smaller ε means constraints are better satisfied). Middle plots show the solve
time. The bottom left and right plots displays the number of Newton steps
and the number of Riccati backward passes executed during the solve of
ALGAMES and iLQGames respectively.

better constraint satisfaction at the expense of slower conver-
gence rate. In the context of a receding horizon implementation
(MPC), finding a good choice of ρ that would suit the whole
sequence of scenarios encountered by a vehicle could be
difficult. In contrast, the same hyperparameters ρ(0) = 1 and
γ = 10 were used in ALGAMES for all the experiments across
this paper. This supports the idea that, thanks to its adaptive
penalty scheme, ALGAMES requires little tuning.

While performing the timing experiments, we also no-
ticed several instances of oscillatory behavior for iLQGames.
The solution would oscillate, preventing it from converging.
This happened even after an adaptive regularization scheme
was implemented to regularize iLQGames’ Riccati backward
passes. Oscillatory behavior was not seen with ALGAMES.
We hypothesize that this is due to the dual ascent update
coupled with the penalty logic detailed in Equations 10 and
5, which add hysteresis to the solver.

D. Monte Carlo Analysis

To evaluate the robustness of ALGAMES, we performed a
Monte Carlo analysis of its performance on a ramp merging
problem. First, we set up a roadway with hard boundaries as
pictured in Fig. 3. We position two vehicles on the roadway
and one on the ramp in a collision-free initial configuration.
We choose a desired final state where the incoming vehicle
has merged into the traffic. Our objective is to generate gen-
eralized Nash equilibrium trajectories for the three vehicles.
These trajectories are collision-free and cannot be improved
unilaterally by any player. To introduce randomness in the

Scenario Freq. in Hz E[δ t] in ms σ [δ t] in ms
Ramp Merging 69 14 72

Intersection 66 15 66
Fig. 6. Running the MPC implementation of ALGAMES 100 times on both
scenarios, we obtain the mean update frequency of the MPC as well as the
mean and standard deviation of δ t, the time required to update the MPC plan.

solving process, we apply a random perturbation to the initial
state of the problem. Specifically, we perturb x0 by adding a
uniformly sampled noise. This would typically correspond to
displacing the initial position of the vehicles by±1m, changing
their initial velocity by ±3% and their heading by ±2.5◦.

We observe in Figure 5, that ALGAMES consistently finds
a satisfactory solution to the problem using the same hyperpa-
rameters ρ(0) = 1 and γ = 10. Out of the 1000 samples 99.5%
converged to constraint satisfaction C≤ 10−3 while respecting
the optimality criterion ||G||1 < 10−2. By definition, ||G||1
is a merit function for satisfying optimality and dynamics
constraints. We also observe that the solver converges to a
solution in less than 0.2s for 96% of the samples. The solver
requires less than 16 Newton steps to converge for 94% of
the samples. These empirical data tend to support the fact that
ALGAMES is able to solve the class of ramp merging problem
quickly and reliably.

For comparison, we present in Figure 5 the results obtained
with iLQGames. We apply the same constraint satisfaction
criterion C ≤ 10−3. We fixed the value of the penalty hy-
perparameter ρ for all the samples as it would not be a fair
comparison to tune it for each sample. Only 3 samples did not
converge with iLQGames, this is a performance comparable to
ALGAMES for which 5 samples failed to converge. However,
we observe that iLQGames is 3 times slower than ALGAMES
with an average solve time of 350 ms compared to 110 ms
and require on average 4 times more iterations (9 against 41).

E. Solver Failure Cases

The Monte Carlo analysis allows us to identify the typi-
cal failure cases of our solver. We empirically identify the
cases where the solver does not satisfy the constraints or the
optimality criterion for the ramp merging problem. Typically
in such cases, the initial guess, which consists of rolling
out the dynamics with no control, is far from a reasonable
solution. Since the constraints are ignored during this initial
rollout, the car at the back can overtake the car at the front
by driving through it. This creates an initial guess where
constraints are strongly violated. Moreover, we hypothesize
that the tight roadway boundary constraints tend to strongly
penalize solutions that would ’disentangle’ the car trajectories
because they would require large boundary violation at first.
Therefore, the solver gets stuck in this local optimum where
cars overlap each other. Sampling several initial guesses with
random initial control inputs and solving in parallel could
reduce the occurrence of these failure cases. Also, being able
to detect, reject, and re-sample initial guesses when the initial
car trajectories are strongly entangled could also improve the
robustness of the solver.

Fig. 7. The blue car starts on the left and finishes on the right. The orange
does the opposite. The pedestrian with the green collision avoidance cylinder
crosses the road from the bottom to the top of the image.

0 20 40 60 80

4th Place

3rd Place

2nd Place

85

12

3

6

78

16 Baseline ALGAMES

Fig. 8. Monte Carlo analysis with 100 randomly sampled initial states, we
record the position of the merging vehicle in the traffic at the end of the
6-second simulations.

VII. MPC IMPLEMENTATION OF ALGAMES

In this section, we propose a model-predictive control
(MPC) implementation of the algorithm which provides us
with a feedback policy instead of an open-loop strategy and
demonstrates real-time performance. We compare this MPC
to a non-game-theoretic baseline on a crowded ramp merging
which is known to be conducive to the “frozen robot” problem.

A. MPC Feedback Policy

The strategies identified by ALGAMES are open-loop
Nash-equilibrium strategies. They are sequences of control in-
puts. On the contrary, DDP-based approaches like iLQGames,
solve for feedback Nash-equilibrium strategies that provide a
sequence of control gains. In the MPC setting, we can obtain
a feedback policy with ALGAMES by updating the strategy
as fast as possible and only executing the beginning of the
strategy. This assumes a fast update rate of the solution. To
support the feasibility of the approach, we implemented an
MPC on the ramp merging scenario described in Figure 3.
There are 3 players constantly maintaining a 40 time step
strategy with 3 seconds of horizon. We simulate 3 seconds
of operation of the MPC by constantly updating the strategies
and propagating noisy unicycle dynamics for each vehicle. We
compile the results from 100 MPC trajectories in Table 6. We
obtain a 69 Hz update frequency for the planner on average.
We observe similar performance on the intersection problem
defined in Figure 7, with an update frequency of 66 Hz.

B. “Unfreezing” the Robot

To illustrate the benefits of using ALGAMES in a receding-
horizon loop, we compare it to a non-game-theoretic base-
line MPC. With this baseline, the prediction step and the
planning step are decoupled. Specifically, each agent predicts
the trajectories of the surrounding vehicles by propagating

straight, constant velocity trajectories. Then, each agent plans
for itself assuming these predicted trajectories are immutable
obstacles. We test these two controllers on a challenging
scenario where a vehicle has to merge on a crowded highway
as presented in Figure 1. We perform a Monte Carlo analysis
by uniformly sampling the initial state, x0, around a nominal
state with perturbations corresponding to a ±2.5m longitudinal
displacement, ±25cm lateral displacement, ±3◦ in angular
displacement for each car. Given the initial state, the vehicle
on the ramp should be able to merge between the blue and
orange cars or the orange and green cars, taking the 2nd and 3rd

place respectively. However, waiting for all cars to pass before
merging into 4th place is not a desirable behavior. Indeed,
with such a policy, the merging vehicle has to slow down
significantly and could get stuck on the ramp if the highway
does not clear. We run ALGAMES in a receding horizon loop
and the baseline MPC to generate 6-second trajectories for 100
different initial states. We record the position of the merging
vehicle at the end of the simulation and compile the results in
Figure 8.

We observe that the “frozen robot” problem occurs with the
baseline MPC for 85% of the simulations. An interpretation of
this result is that the vehicle on the ramp cannot find a merging
maneuver that is not colliding with its constant-velocity trajec-
tory predictions. Since there is no feasible merging maneuver,
the only option left is to wait for the other vehicles to pass
before merging.

On the contrary, by running ALGAMES in a receding-
horizon loop, the merging vehicle inserts into traffic in 2nd or
3rd place in 96% of the simulations (Figure 8). ALGAMES
avoids the “frozen robot” pitfall in most cases by gradually
adjusting its velocity to merge with minimal disruption to the
traffic (Figure 1).

VIII. CONCLUSIONS

We have introduced a new algorithm for finding con-
strained Nash-equilibrium trajectories in multi-player dynamic
games. We demonstrated the performance and robustness
of the solver through a Monte Carlo analysis on complex
autonomous driving scenarios including nonlinear and non-
convex constraints. We have shown real-time performance for
up to 4 players and implemented ALGAMES in a receding-
horizon framework to give a feedback policy. We empir-
ically demonstrated the ability of ALGAMES to mitigate
the “frozen robot” problem in comparison to a non-game-
theoretic receding horizon planner. The results we obtained
from ALGAMES are promising, as they seem to let the vehi-
cles share the responsibility for avoiding collisions, leading to
natural-looking trajectories where players are able to negotiate
complex, interactive traffic scenarios that are challenging for
traditional, non-game-theoretic trajectory planners. For this
reason, we believe that ALGAMES could be a very efficient
tool to generate trajectories in situations where the level of
interaction between players is strong. Our implementation
of ALGAMES is available at https://github.com/
RoboticExplorationLab/ALGAMES.jl.

https://github.com/RoboticExplorationLab/ALGAMES.jl
https://github.com/RoboticExplorationLab/ALGAMES.jl

REFERENCES

[1] P. Trautman and A. Krause, “Unfreezing the robot: Nav-
igation in dense, interacting crowds,” in 2010 IEEE/RSJ
International Conference on Intelligent Robots and Sys-
tems, (Taipei), pp. 797–803, IEEE, Oct. 2010.

[2] D. Sadigh, S. S. Sastry, S. A. Seshia, and A. Dragan, “In-
formation gathering actions over human internal state,” in
2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), (Daejeon, South Korea),
pp. 66–73, IEEE, Oct. 2016.

[3] D. Sadigh, S. Sastry, S. A. Seshia, and A. D. Dragan,
“Planning for Autonomous Cars that Leverage Effects
on Human Actions,” in Robotics: Science and Systems
XII, Robotics: Science and Systems Foundation, 2016.

[4] D. Fridovich-Keil, E. Ratner, J. C. Shih, A. D. Dragan,
and C. J. Tomlin, “Iterative Linear Quadratic Approx-
imations for Nonlinear Multi-Player General-Sum Dif-
ferential Games,” arXiv preprint arXiv:1909.04694, p. 8,
2019.

[5] A. Dreves and M. Gerdts, “A generalized Nash equi-
librium approach for optimal control problems of au-
tonomous cars: A generalized Nash equilibrium approach
for optimal control problems of autonomous cars,” Opti-
mal Control Applications and Methods, vol. 39, pp. 326–
342, Jan. 2018.

[6] J. F. Fisac, E. Bronstein, E. Stefansson, D. Sadigh,
S. S. Sastry, and A. D. Dragan, “Hierarchical Game-
Theoretic Planning for Autonomous Vehicles,” in 2019
International Conference on Robotics and Automation
(ICRA), (Montreal, QC, Canada), pp. 9590–9596, IEEE,
May 2019.

[7] E. Schmerling, K. Leung, W. Vollprecht, and M. Pavone,
“Multimodal Probabilistic Model-Based Planning for
Human-Robot Interaction,” in 2018 IEEE International
Conference on Robotics and Automation (ICRA), (Bris-
bane, QLD), pp. 1–9, IEEE, May 2018.

[8] R. Spica, D. Falanga, E. Cristofalo, E. Montijano,
D. Scaramuzza, and M. Schwager, “A Real-Time Game
Theoretic Planner for Autonomous Two-Player Drone
Racing,” arXiv:1801.02302 [cs], Jan. 2018.

[9] A. Liniger and J. Lygeros, “A Noncooperative Game
Approach to Autonomous Racing,” IEEE Transactions
on Control Systems Technology, pp. 1–14, 2019.

[10] A. Bressan, “Noncooperative Differential Games. A Tu-
torial,” Department of Mathematics, Penn State Univer-
sity, p. 81, 2010.

[11] T. Basar and G. J. Olsder, Dynamic noncooperative game
theory, vol. 23. Siam, 1999.

[12] F. Facchinei and C. Kanzow, “Generalized Nash equilib-
rium problems,” 4OR, vol. 5, pp. 173–210, Sept. 2007.

[13] J. H. Yoo and R. Langari, “Stackelberg Game Based
Model of Highway Driving,” in Volume 1: Adaptive Con-
trol; Advanced Vehicle Propulsion Systems; Aerospace
Systems; Autonomous Systems; Battery Modeling; Bio-
chemical Systems; Control Over Networks; Control Sys-

tems Design; Cooperativ, (Fort Lauderdale, Florida,
USA), pp. 499–508, ASME, Oct. 2012.

[14] A. Britzelmeier, A. Dreves, and M. Gerdts, “Numerical
solution of potential games arising in the control of co-
operative automatic vehicles,” in 2019 Proceedings of the
Conference on Control and Its Applications (W. S. Levine
and R. Stockbridge, eds.), (Philadelphia, PA), pp. 38–
45, Society for Industrial and Applied Mathematics, Jan.
2019.

[15] B. Di and A. Lamperski, “Differential Dynamic Program-
ming for Nonlinear Dynamic Games,” arXiv:1809.08302
[math], Sept. 2018.

[16] B. Di and A. Lamperski, “Newton’s Method and Differ-
ential Dynamic Programming for Unconstrained Nonlin-
ear Dynamic Games,” arXiv:1906.09097 [cs, eess], Jan.
2020.

[17] B. Di and A. Lamperski, “First-Order Algorithms
for Constrained Nonlinear Dynamic Games,”
arXiv:2001.01826 [cs, eess], Jan. 2020.

[18] M. Wang, Z. Wang, J. Talbot, J. Christian Gerdes,
and M. Schwager, “Game Theoretic Planning for Self-
Driving Cars in Competitive Scenarios,” in Robotics:
Science and Systems XV, Robotics: Science and Systems
Foundation, June 2019.

[19] J. Morimoto and C. G. Atkeson, “Minimax Differential
Dynamic Programming: An Application to Robust Biped
Walking,” Advances in neural information processing
systems, pp. 1563–1570, 2003.

[20] J.-S. Pang and M. Fukushima, “Quasi-variational in-
equalities, generalized Nash equilibria, and multi-leader-
follower games,” Computational Management Science,
vol. 2, pp. 21–56, Jan. 2005.

[21] F. Facchinei and J.-S. Pang, “Exact penalty functions
for generalized Nash problems,” Large-scale nonlinear
optimization, pp. 115–126, 2006.

[22] F. Facchinei, A. Fischer, and V. Piccialli, “Generalized
Nash equilibrium problems and Newton methods,” Math-
ematical Programming, vol. 117, pp. 163–194, Mar.
2009.

[23] F. Facchinei and C. Kanzow, “Penalty Methods for the
Solution of Generalized Nash Equilibrium Problems,”
SIAM Journal on Optimization, vol. 20, pp. 2228–2253,
Jan. 2010.

[24] M. Fukushima, “Restricted generalized Nash equilibria
and controlled penalty algorithm,” Computational Man-
agement Science, vol. 8, pp. 201–218, Aug. 2011.

[25] D. P. Bertsekas, Constrained optimization and Lagrange
multiplier methods. Academic press, 2014.

[26] J. Nocedal and S. Wright, Numerical optimization.
Springer Science & Business Media, 2006.

[27] C. Daskalakis, P. W. Goldberg, and C. H. Papadimitriou,
“The complexity of computing a Nash equilibrium,”
SIAM Journal on Computing, vol. 39, no. 1, pp. 195–
259, 2009.

	Introduction
	Related Work
	Equilibrium Selection
	Game-Theoretic Trajectory Optimization
	Generalized Nash Equilibrium Problems

	Problem Statement
	Augmented Lagrangian Formulation
	Individual Optimality
	Root-Finding Problem
	Augmented Lagrangian Updates
	ALGAMES
	Algorithm Complexity
	Algorithm Discussion

	Simulations: Design and Setup
	Autonomous Driving Problem
	Constraints
	Cost Function

	Comparison to iLQGames
	Motivation
	Timing Experiments
	Discussion
	Monte Carlo Analysis
	Solver Failure Cases

	MPC Implementation of ALGAMES
	MPC Feedback Policy
	``Unfreezing'' the Robot

	Conclusions

