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SAMPLE-BASED ROBUST UNCERTAINTY PROPAGATION FOR
ENTRY VEHICLES

Remy Derollez∗, Zachary Manchester∗

This paper introduces a new approach for uncertainty quantification and propaga-
tion applicable to entry vehicle trajectories, suitable for use in trajectory optimiza-
tion and computation of approximate invariant funnels. Because of the lack of
precise knowledge of the atmospheres of other solar system bodies, traditional en-
try trajectory design methods rely on extensive Monte Carlo simulations, leading
to accurate results but at high labor and computational costs. Other conventional
methods can be faster but require assumptions on the probability distributions of
dispersion parameters. The approach developed in this paper represents uncertain-
ties in the system using conservative ellipsoidal bounds. A sample-based strategy
inspired by the Unscented Kalman Filter is used to propagate the dynamics and
uncertainties around the nominal trajectory. The method is demonstrated on the
Duffing oscillator and then applied to a Mars entry vehicle problem using both
three-degree-of-freedom and six-degree-of-freedom dynamical models. Its per-
formance is compared with traditional uncertainty quantification methods.

INTRODUCTION

The future ambitions of multiple space agencies, including NASA, target the Moon and Mars
as future destinations. The Entry Descent and Landing (EDL) phase is a crucial part of all these
missions that require landing on another celestial body. Knowledge of a planet’s atmospheric pa-
rameters, winds, and the position and velocity of the entry vehicle are all imperfect. Therefore,
managing uncertainty is a fundamental problem in entry guidance and is critical to achieving the
objectives of the planned missions while meeting safety and accuracy requirements.

New NASA missions seek to land larger payloads with increased precision on Mars, for exam-
ple, to achieve proximity with pre-positioned robotic assets. As mentioned in the literature,1 most
of the processes used today still heavily rely on methods developed for the Viking missions in the
70’s.2 Most of the uncertainty analysis is performed using Monte Carlo methods3–5 which are time-
consuming and computationally heavy. In contrast, Polynomial Chaos Expansion (PCE) has been
applied to hypersonic flight dynamics as shown by the work of Prabhakar and al6 but PCE does
not scale well with the dimension of the uncertainty space. More recently, Jin and al. applied lin-
ear covariance (linCov) techniques to the entry problem on a three-degree-of-freedom model and
compared the results to a Monte Carlo analysis.7 Woffinden and al. went further to apply similar
linear covariance analysis techniques to atmospheric flight during EDL phase but this time on a full
six-degree-of-freedom dynamical model to generate navigation systems requirements for the Safe
and Precise Landing – Integrated Capabilities Evolution (SPLICE) project.8 While these new ap-
proaches are usually faster than traditional Monte Carlo analyses, some require assumptions on the
probability distributions followed by the parameters analyzed which is difficult to infer given the
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relatively small amount of data available on Mars environment. Others are rather destined to disper-
sion analysis for system design and would be difficult to integrate in an optimization framework.

This paper presents a method that does not assume any prior knowledge on the type of distribu-
tion followed by the uncertain variables and therefore provide conservative bounds on the trajec-
tory taken by the vehicle. In order to obtain guarantees on the safety and performance of the real
trajectory, we only use bounds on the uncertain parameters based on data obtained on the Mars en-
vironment. The introduction and the propagation of these bounds through the non-linear dynamics
allows us to propagate uncertainties in a more accurate way than linearization techniques and at
a relatively low computational cost compared to traditional Monte Carlo dispersion analyses. The
approach developed also scales way better than Polynomial Chaos Expansion techniques. Our work
is applicable to a full six-degree-of-freedom non-linear dynamic entry model with no dimension re-
duction and can be easily incorporated in trajectory optimization solvers. In this work, we primarily
focus on the EDL phase of a low lift-to-drag ratio vehicle on a Mars mission.

This paper proceeds as follows: The first section provides the necessary background related to
uncertainty propagation techniques as well as sum-of-squares programming and previous work on
robust funnel computation. We then present our sample-based approach principles and detail its
application on the example of the Duffing oscillator. The aforementioned technique is applied to
the entry vehicle problem on the traditional three-degree-of-freedom (3 DOF) Vinh’s model as well
as on a full six-degree-of-freedom (6 DOF) entry model. Our method’s performance is analyzed
and compared with Monte Carlo, Linear Covariance Analysis and Polynomial Chaos Expansion
techniques.

BACKGROUND

In this first section we give some elements on uncertainty quantification methods used in this
paper. In particular we give the basis of two probabilistic methods: linear covariance analysis
techniques and polynomial chaos expansions. The work of Luo and Yang give a general overview
of uncertainty approaches used in astrodynamics.9

Linear Covariance Analysis

When considering a random vector x following a given distribution, one way to propagate uncer-
tainties is simply to linearize the system dynamics f(x, t) around the nominal unperturbed trajectory
using a first-order Taylor expansion. If we define, m(t) as the mean of the random variable x at
time t and Σ(t) its covariance matrix, we have the following well known formulae,

m(t) = Φ(t, t0)m(t0), (1)

Σ(t) = Φ(t, t0)Σ(t0)Φ(t, t0) +Q, (2)

where Φ(t, t0) = expA(t− t0) is the state transition matrix (STM) computed using the matrix
A = d

dtf(x, t)|x=xnom , giving the first order approximation of the dynamics around the nominal
trajectory. These equations form the basis of linear covariance analysis techniques enabling to
propagate the mean and the covariance of the random vector further in time, with the assumption
of random noise of covariance matrix Q added to the dynamics. More detailed information on this
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approach can be found in the work of Maybeck.10 Note that the equations derived above are the
continuous version of the formulae used in the prediction step of the Extended Kalman Filter (EKF).

Polynomial Chaos Expansion

Polynomial Chaos Expansion (PCE) enables to approximate the solution of a stochastic differen-
tial equation (differential equation with uncertain parameters) that is square-measurable, possibly
non-Gaussian, with respect to the input uncertainties. In this sense it is the stochastic pendant of
Sturm-Liouville theory and the associated generalized Fourier decomposition used for deterministic
partial differential equations. Unlike traditional methods, PCE involves a non-linear propagation of
the system’s state and is not restricted to Gaussian random inputs. The approximation of the solu-
tion u of a stochastic equation (depending on one random parameter ξ) using PCE is the best linear
approximation of the true solution in the sense that,

E[u(t, .)− up(t, .)] → 0, p→∞, (3)

where p is the order of the polynomial approximation and the convergence is mean square. We
can therefore write the approximation of the solution as a linear combination of a given family of
polynomial (φi)

p
i=0 which depends on the type of distribution followed by the uncertainty parameter

ξ,

up(t, ξ) =

p∑
i=0

ci(t)φi(ξ). (4)

Therefore our solution is entirely determined by the vector of coefficients (ci)i. Interestingly, the
moments of the probability distribution characterizing the state uncertainty of the system at time t
are directly related to the values of the coefficients at that time. In this paper, we use a non intrusive
method11 for determining the coefficients. It makes use of the full non-linear dynamics and relies on
a sampling method which involves solving a relatively simple least-square regression problem on
the sampled data at each time step. The reader can find a complete treatment of PCE and associated
methods in the work of Xiu.12

Sum-Of-Squares Programming

At the core of our approach to entry guidance are sum-of-squares (SOS) verification techniques.
SOS methods have been developed in the robotics community over the past decade to enable con-
trol of complex mechanical systems with guarantees on safety, robustness, and performance in the
presence of disturbances and uncertainty. A polynomial is said to be a sum-of-squares if it can be
written as a sum of squared terms. The immediate consequence is the non-negativity of the poly-
nomial on the domain of interest. Given any polynomial P , we can write P = zTCz, where the
vector z contains all the monomials up to a given degree and C is a matrix of coefficients. It turns
out that if the matrix C is positive definite, then the corresponding polynomial P is SOS, therefore
making the link between SOS and Semi-Definite Programming (SDP). It follows that SOS methods
can be used to find polynomial Lyapunov functions and, consequently, to the study of stability of
complex dynamical systems. Given a dynamical system, stability of the origin can be proven if a
non-negative scalar function
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V (x) ≥ 0, (5)

can be found that decreases along trajectories of the system:

V̇ = ∇V · f(x, u, w) ≤ 0. (6)

Robust Invariant Funnels and DIRTREL

The basic sum-of-squares technique outlined above can be extended in many ways. In partic-
ular, it can be used to find invariant funnels, which are time-varying versions of basins of attrac-
tion. Loosely, an invariant funnel can be thought of as a tube around a reference trajectory within
which a tracking controller is guaranteed to stabilize the system (Figure 1). Funnels have attracted
widespread interest in the robotic motion planning community in recent years and have been used
to solve a variety of challenging control problems.

Figure 1. Conceptual depiction of an invariant funnel around a reference trajectory.

In addition to certifying the stability of tracking controllers under nominal conditions, robust in-
variant funnels can be computed that account for bounded disturbances. In this context, they can
provide error ellipsoids along a nominal trajectory without resorting to Monte Carlo simulation.
This approach is used in the DIRTREL (DIRect TRanscription with Ellipsoidal disturbances and
Linear feedback) algorithm developed by Manchester and Kuindersma,13 which provides a robust
trajectory optimization framework by using approximate invariant funnels. Disturbances are as-
sumed to be contained in an ellipsoidal set and the uncertainty on the state is represented as an
ellipsoidal region at each time step as well. By linearizing the dynamics, the authors are able to
derive a closed form equation providing the evolution of the state uncertainty region given some
initial bounds on the state and some bounds on the perturbation parameters.

The essence of the present paper is to extend the uncertainty propagation technique of DIRTREL
by using the full non-linear dynamics and computing approximate invariant funnels using a sam-
pling method. Just as the Unscented Transform used in the UKF provides a sample-based analog of
linear covariance analysis, we develop a sampled-based version of the DIRTREL algorithm for en-
try vehicle applications. However, the reader should remember that, unlike the methods mentioned
above, SOS methods are mathematical verification methods inherently concerned with obtaining ro-
bust guarantees on the trajectory of the system and, therefore, focus on finding conservative bounds
on the trajectory. There is therefore a difference in nature between the bounds obtained through
these verification techniques and the statistical limits that are given by methods like linear covari-
ance analysis, Monte Carlo simulations, or polynomial chaos expansions, making the distinction be-
tween probabilistic methods on the one hand and bounded set propagation methods like DIRTREL
and the one developed in this paper on the other hand.
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SAMPLE-BASED UNCERTAINTY PROPAGATION

Uncertainty Representation

We first assume that the discrete-time dynamics function of our system is given by

xi+1 = f(xi, ui, wi), (7)

where xi represents the state vector of the system at time step i, ui is the control input on the
system and wi represents a vector of disturbances acting on the system at time i that can be related
to unmodeled dynamical effects, noise, or state estimation errors. Note that we do not restrict the
perturbation wi to be additive. Next we define the uncertainty regions as ellipsoidal sets. The
disturbance values are constrained to belong to the set

Di = {w | wTS−1
i w ≤ 1}, (8)

and the state vector uncertainty region is modeled as the ellipsoid centered in x̄i and parameter-
ized by Ei,

Ui = U(x̄i, Ei) = {x ∈ Rn | (x− x̄i)TE−1
i (x− x̄i) ≤ 1}, (9)

where Si and Ei are positive definite matrices and n is the dimension of the space in which the
ellipsoids are computed, most of the time equal to the dimension of the state space of the dynamical
model in use.

Uncertainty Propagation

Given an uncertainty region at time step i, we want to propagate this region according to the
dynamics of our system to obtain conservative uncertainty bounds at the following time step i+ 1.
Linearizing the dynamics would allow us to propagate the ellipsoidal uncertainty regions in a closed
form as the image of an ellipsoidal set by a linear function remains an ellipsoidal set. However,
in this paper we extend the approach developed in DIRTREL by using a sampling method and
make use of the full non-linear dynamics of the system. In this sense, instead of working with the
information contained in the linear form of the dynamics, we use the full dynamics but access the
information by selecting a certain number of points to be propagated.

We extract some points in the uncertain region at time i according to a chosen sampling scheme.
We denote the sampled points at time i as (xki )k=1,...,m. These points are then propagated using the
dynamics to obtain the points (x̂ki+1)k=1,...,m satisfying

x̂ki+1 = f(xki , ui, wi), k = 1, . . . ,m. (10)

Note the difference between the points (x̂ki+1)k=1,...,m obtained after propagation of the sampled
points at time step i, (xki )k=1,...,m and the set of points (xki+1)k=1,...,m, characterizing the sampled
points at time step i+1. We solve a convex optimization problem to fit a minimum-volume enclosing
ellipsoid (MVEE) enclosing the propagated points to obtain our uncertainty region characterized by
the matrix Ei+1 at step i + 1. The points (xki+1)k=1,...,m are sampled using the obtained ellipsoid
Ei+1.
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Ei+1 = MVEE[(x̂ki+1)k | x̂ki+1 = f(xki , ui, wi), x
k
i ∈ Ui, wi ∈ D, k = 1, . . . ,m]. (11)

The MVEE fitting algorithm is detailed in the next section. Figure 2 provides a schematic of the
corresponding process in the case n = 2 and Algorithm 1 represents the sample-based procedure in
a more general and rigorous way.

Figure 2. Uncertainty propagation principle in 2D

Algorithm 1: Ellipsoidal uncertainty regions propagation algorithm
Input : Initial ellipsoidal uncertainty region, A0, b0, D

1 procedure
2 A← A0;
3 b← b0;
4 for i = 1 to N do
5 (xki )k=1,...,m ← EXTRACT(Ai, bi);
6 (x̂ki+1)k=1,...,m ← PROPAGATE((xki )k=1,...,m, ui, wi);
7 Ai+1, bi+1 ←MVEE((x̂ki+1)k=1,...,m);
8 end
9 return (Ai, bi)i

10 end procedure

The reader will note the resemblance with the dynamic propagation step of the Unscented Kalman
Filter (UKF). While linearization techniques usually approximate the dynamics of the system lo-
cally and propagate Gaussian disturbances through it (analog to the Extended Kalman Filter), the
unscented filter still makes use of the full non-linear dynamics of the system and selects and propa-
gates only special points (exhibiting the same statistical properties as the corresponding distribution)
enabling an accurate reconstruction of the distribution after propagation. The difference with our
approach lies in its conservative nature, as the bounds that we use do not correspond to a statistical
confidence level and do not assume an underlying probability distribution.

Note that, in the majority of the applications treated in this paper, the sampling scheme corre-
sponds to the semi-major axes of the ellipsoid at each time in both directions and of the geometric
center of the ellipsoid (2n + 1 points). This is similar to the sigma point selection heuristic in the
unscented transform procedure, which enables to approximate the first two moments of the distri-
bution up to first and second order respectively. Once again however, instead of selecting points on
the sublevel set of a probability function, our points lie exactly on the boundary of the conservative
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uncertainty ellipsoid. Just like the UKF procedure can be extended to propagate and recover more
information,14 a more elaborate sampling scheme can allow us to propagate conservative bounds
on the dynamics for a system containing higher order non-linearities. The amount of information
accessed and propagated is directly related to the sampling scheme.

Ellipsoid Fitting Process

We now detail the fitting procedure as performed by the MVEE function used in Algorithm 1. For
any time step i we define the symmetric matrix Ai satisfying A2

i = E−1
i . Ai is a square root of E−1

i

and the columns of A−1
i = E

1
2
i give the directions characterizing the semi axes of the ellipsoidal

region and are therefore directly related to the uncertainty in the associated direction. In this section
we represent the ellipsoidal uncertainty set with the matrix Ai ∈ Rn×n and the vector bi ∈ Rn.
This choice is simply for convenience when formulating the fitting problem as stated below. We can
relate our different representations using Ei = A−2

i and x̄i = −A−1
i bi. Given a set of propagated

points at time i + 1, the objective is to find the ellipsoid in dimension n, parameterized by the
matrices A and b that covers the set of points while minimizing its volume. The volume of a given
ellipsoid is inversely proportional to the determinant of the matrix A and this classical optimization
problem can be reformulated as15

minimize
A,b

− log det (A)

s.t. ||Ax̂ki+1 + b|| ≤ 1 k = 1, . . . ,m.
. (12)

Note that the time step subscript i + 1 has been dropped for convenience, but it should not be
forgotten that a convex optimization problem is solved at each time step. In this work, we first
resorted to the use of Mosek.16 This commercial solver gives good performance but can run into
some difficulty when dealing with some edge cases. In practice, the optimization process can run
into numerical issues linked to the range and the scaling of the points. Similarly, as the dimension of
the space increases, numerical errors associated with finite-precision arithmetic can grow. In order
to overcome these difficulties and to improve the performance of the process, a custom solver for
this problem was implemented. It is inspired by the Dual Reduced Newton algorithm developed by
Freud et al17 with some changes mainly in the line search procedure.

ENTRY VEHICLE MODELS

This section briefly details the entry dynamics models used in this paper for the application of the
sample-based uncertainty propagation method. We consider a sphere-cone forebody entry vehicle
geometry, as it has been used previously for the Viking, Pathfinder, Phoenix,18 Mars Exploration
Rover (MER) and Mars Science Laboratory (MSL) missions. It is indeed the optimized geometry
providing a low ballistic coefficient which is required to accomplish relevant deceleration during
entry but also enabling to keep the temperature relatively low. Note that in considering future
crewed missions to Mars, for which the mass is predicted to be around 20 metric tons (or about 20
times the mass of MSL), the geometry of the interplanetary vehicle might be different.19 However,
our code uses a panel method to compute the aerodynamic coefficients and is therefore flexible on
the geometry considered. Figure 3 shows the geometry of previous missions.
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Figure 3. Previous NASA Mars missions geometry

The aerodynamics is a major component of the entry dynamics as the interaction of the vehicle
with the atmosphere of the planet mainly determines the type of trajectory and its range. As tra-
ditionally used in hypersonic flight, we use Newton’s impact theory to compute the aerodynamic
coefficients as a function of the total angle of attack.20 In brief, this theory considers that incom-
ing flow molecules individually impact the vehicle surface element yielding the normal component
of their linear momentum and retaining the parallel component of it. Simple formulae can be de-
rived to obtain the local pressure coefficient and therefore the aerodynamic forces and moments by
integration. The values of these coefficients are precomputed and stored in look-up tables.

Entry vehicle dynamics can suffer from instabilities as recalled in the work of Bibi and al.21 For
a more accurate modeling of the entry dynamics, we compute the dynamic derivatives with respect
to the angular velocity components (which are the most important dynamic derivative terms). They
allow us to take into account the damping phenomena due to the angular rotation of the vehicle and
therefore provide a better stability of the vehicle when entering the atmosphere as detailed in the
work of Gallais.22

The simulation of the Martian environment uses the data from MarsGRAM 2010. A Julia wrapper
module has been implemented with the objective of incorporating and using the data easily in the
trajectory simulation code enabling a reduction of computation expenses. Most of the data used
in the following simulations correspond to a standard configuration (absence of extreme winds and
absence of dust particles in the atmosphere). Note that these conditions can be easily modified to
consider different scenarios in the future.

In both models the only control input considered is the bank angle. As we do not consider optimal
control strategy so far, it is a defined sequence of values making the vehicle stable just as in the work
of Benito and Mease.23 The control input will be of bigger importance when performing trajectory
optimization.

3 DOF Model

The three-degree-of-freedom model usually used in the domain of atmospheric entry does not
take into account the full rotational motion of the capsule. The specific energy of the capsule is
known at the start and at the end of the dynamics. Profiles are provided for the attack angle and
the bank angle based on experimental data and requirements and are then adjusted to satisfy the
constraints on drag, dynamic pressure and heat that the vehicle undergoes. The system of equations
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describing the dynamics for this approach is known as the Vinh’s model and can be found in the
work from Manrique et al.24 This representation uses the position vector of the center of mass of the
vehicle in spherical coordinates and flight path and heading angles for the direction of the velocity
vector.

6 DOF Model

The six-degree-of-freedom model takes into account rigorously both the translational and rota-
tional motion of the capsule. As a consequence it is able to render the possibly unstable behavior
of the capsule model phenomena more accurately, therefore being closer to the real dynamical be-
havior. This type of model is also interesting for modeling potential actuators in a more accurate
way. Our approach uses quaternions to propagate the attitude of the vehicle and our state vector is
written in a 13-dimensional space as

X = [x, y, z, q0, q1, q2, q3, ẋ, ẏ, ż, ωx, ωy, ωz], (13)

where we express the position and velocity of the spacecraft in the cartesian frame centered with
the planet fixed. q0 is the scalar part of the quaternion representing the attitude of the vehicle with
respect to the inertial frame and ωx, ωy, ωz are the components of the angular velocity vector of the
vehicle in the body frame. The forces considered include gravity (with J2 effect) and aerodynamic
forces (lift, drag, and aerodynamic moments).25, 26 Aerodynamic loads and moments are computed
using the aerodynamic coefficients as detailed above. The full motion of the vehicle is given by the
well known Newton-Euler system of equations and the associated kinematics equations (position
vector and quaternions). The inertia parameters used for the simulation are shown in Table 1.

Table 1. 6 DOF nominal parameters

Parameter Value
Mass [kg] 600.0

Inertia Matrix [kg.m2]

160.0 0.0 40.0
0.0 160.0 0.0
40.0 0.0 200.0


COM position [m] [0.001, 0.0, -0.189]

Even if quaternions are an efficient and convenient way to propagate the attitude of the vehicle
forward in time, there are not really adapted to uncertainty work. When needed in the following, the
attitude of the vehicle is represented by the rotation vector (unconstrained attitude parameterization).
The kinematics and dynamics equations linking the two representations can be found in the paper
from Diebel.27 Similarly when propagating ellipsoids in our sample-based method, we switch to
this other representation. In addition, we use the trick implemented in the multiplicative extended
Kalman Filter (MEKF) usually used for attitude errors propagation in aerospace. We therefore deal
with the rotation vector characterizing the attitude error with respect to a reference.28 At each time
step, the reference is chosen to be the center of the ellipsoid for convenience and to reduce numerical
errors.
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RESULTS

The Duffing Oscillator

In this section, we apply our sample-based uncertainty approach to the Duffing oscillator. It
allows us to validate our approach on a classic non-linear system that is easy to visualize. We
recall the nonlinear second order differential equation characterizing the dynamics of the Duffing
oscillator

ẍ+ δẋ+ αx+ βx3 = γ cosωt, (14)

where ẋ refers to the first derivative of the state variable with respect to the independent variable
of time t. We summarize the values of the parameters used in the following simulation in Table 2. A
feedback linear controller is added and additive Gaussian noise is implemented in the dynamics as
well. Figures 4 to 6 show the trajectory of the center of the ellipses and compare it with the nominal
trajectory both in position and in velocity. Figure 7 also shows the propagation of the ellipses for the
first ten time steps giving some information on the dynamics behaviour for that time range. We also
plot the dispersion around position and velocity and compare the results with Monte Carlo, linear
covariance analysis and PCE methods as shown on Figures 8 and 9.

Figure 4. Position Figure 5. Velocity

Figure 6. Phase portrait Figure 7. Ellipses propagation
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Figure 8. Position dispersion Figure 9. Velocity dispersion

Table 2. Duffing simulation values

Parameter Value Uncertainty bound
α -1.0 N.A.
β 1.0 N.A.
δ 0.2 N.A.
γ 0.1 0.001
ω 1.0 N.A.
x0 0.1 0.01
ẋ0 0.1 0.01
∆t 25.0 s N.A.

Table 3. 3 DOF simulation values
Parameter Value Uncertainty bound
r [m] 3.5145× 106 50.0
θ [deg] 0.0 0.1
φ [deg] 0.0 0.1

v [m/s] 7.032× 103 1.0
γ [deg] −15.0 0.1
ψ [deg] 0.0 0.1

ρ0 [kg/m3] 0.0158 10−5

wy[m/s] N.A. 1.0

The different methods perform well on this simple example. We see that the new approach gives
some more conservative bounds and performs better than linear covariance analysis for the same
integration step. Note that the black dotted line refers to the 3σ deviation computed using Monte
Carlo method (MC), the green line is the 3σ deviation computed by PCE, and the orange line the one
obtained through linear covariance analysis. Individual trajectories refers to the sampled trajectories
used for Monte Carlo simulation.

3 DOF Entry Vehicle Model

Figure 10 shows the trajectory followed by the center point of the consecutive ellipsoids com-
puted, which follows the shape of the nominal trajectory. Figures 11 to 16 show the uncertainty
analysis performance compared to other techniques, the labels match the ones used for the Duffing
oscillator. The parameters of the simulation are given in Table 3. The simulation is performed for
80 seconds when the spacecraft basically reaches the proper altitude for potential parachute deploy-
ment. Note that Figure 11 and 12 give a concrete example of the safety and conservative nature
of the bounds computed using the new method as some sampled trajectories evolve outside of the
limits drawn by traditional probabilistic methods.
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Figure 10. Ellipsoid center trajectory

Figure 11. Radius dispersion Figure 12. Velocity dispersion

Figure 13. Longitude dispersion Figure 14. Flight path dispersion
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Figure 15. Latitude dispersion Figure 16. Heading dispersion

6 DOF Entry Vehicle Model

Table 4 summarizes the different parameters used. We have considered uncertainties in the ini-
tial state as well as small disturbances in the atmospheric density coefficient and in the relative
velocity of the vehicle. The simulation is this time performed during the first phase of entry for
approximately 60 seconds.

Table 4. 6 DOF simulation values
Parameter Value Uncertainty bound
x [m] 3.5145× 106 50.0
y [m] 0.0 50.0
z [m] 50.0 1.0
ex 0.2436 0.005
ey −2.09 0.005
ez −2.09 0.005

vx [m/s] −1.6× 103 10−3

vy [m/s] 6.8× 103 10−3

vz [m/s] 0.1 10−3

ωx [rad/s] 0.0 10−6

ωy [rad/s] 0.0 10−6

ωz [rad/s] 0.0 10−6

ρ0 [kg/m3] 0.0158 10−5

wx,y,z[m/s] N.A. 1.0

Note that the polynomial chaos expansion method has been represented on one of the plots only.
An accurate computation using PCE would require a higher order polynomial expansion, not really
tractable in a 16-dimensional uncertainty space.

The results of the analysis are shown in Figures 17 to 26. The new approach performs well and
always gives conservative bounds on the possible trajectories. While some individual trajectories
can evolve outside the 3σ bounds determined by probabilistic-based methods, our conservative
method always contain them. It is interesting to realize that linear covariance analysis performs
well overall. However if our approach gives relatively high conservative dispersions in position,
it clearly stays close to the limits of trajectories and is able to follow the dynamics properly when
meeting highly oscillating and non-linear phenomena like it is the case for the attitude of the vehicle.
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Figure 17. Position x dispersion Figure 18. Position y dispersion

Figure 19. Position z dispersion Figure 20. Rotation vector x dispersion

Figure 21. Velocity x dispersion Figure 22. Velocity y dispersion

Figure 23. Velocity z dispersion Figure 24. Ang. Vel. x dispersion
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Figure 25. Ang. Vel. y dispersion Figure 26. Ang. Vel. z dispersion

Linear covariance techniques are dependent on the quality of the linearization techniques which can
depend on the system itself. For a given time step, linCov techniques can miss certain non-linearity
and predicts tighter bounds like in Figure 21 or too conservative bounds as in Figure 20. Finally
the bounds given by MC are usually accurate but do not correspond to conservative limits. In
addition, MC is the most computationally heavy technique along with non-intrusive polynomial
chaos methods for the 6 DOF analysis.

CONCLUSIONS AND FUTURE WORK

A new uncertainty representation and quantification method for dynamical systems has been in-
troduced. It uses ellipsoidal sets to represent the uncertain regions at each time step and solves a
minimum-volume enclosing ellipsoid problem on a chosen set of propagated points, therefore prop-
agating uncertainties in a conservative and safe way. The method has been validated on the Duffing
oscillator and then applied respectively to a three and six-degree-of-freedom entry vehicle models,
demonstrating the performance of the approach by comparing its application to Monte Carlo, Linear
Covariance analysis and Polynomial Chaos Expansion methods.

This approach provides a fast uncertainty quantification method giving conservative bounds on
the trajectory, making no assumption on probability distributions followed by the uncertain param-
eters and is able to take into account the full non-linear dynamics of entry phase. The uncertainty
propagation process is differentiable and is therefore well suited for use in optimization procedures
(e.g. vehicle design optimization). Future work includes its use in a trajectory optimizer like AL-
TRO.29 At a higher level, the authors are also working on the concrete connection between the
sampling scheme and the information propagated during the uncertainty propagation process as
well as the deeper link with SOS programming for robust invariant funnels computation.
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