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Abstract—The availability of low-cost small satellites and com-
mercial launch services has enabled a proliferation of dis-
tributed small-satellite missions. However, these missions re-
quire precise relative navigation, traditionally provided by ex-
pensive GNSS receivers that are limited to operation in low-
Earth orbit. In this paper, we introduce a novel, scalable, cost-
effective navigation method for both absolute and relative orbit
determination that is suitable for resource-constrained small-
satellite formations. Our approach combines inter-satellite
ranging, a single “anchor” satellite with global measurements,
and a highly accurate dynamics model in a nonlinear least-
squares estimator. We demonstrate that our estimator can
resolve the full orbital states of all spacecraft in a formation
despite the inherent ambiguities of range-only navigation. We
evaluate our method through numerical experiments with var-
ied network topologies and an on-orbit demonstration during
the PY4 satellite mission, achieving absolute positioning accu-
racy of 0.21m for the anchor satellite and 0.33m for the non-
anchor satellite.
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1. INTRODUCTION
The increasing availability of low-cost commercial launch
ride-share services has fueled the rapid proliferation of small
satellite platforms, such as CubeSats. Missions involving
fleets of multiple spacecraft acting as distributed sensing
platforms [1] have gained significant interest due to their po-
tential to achieve mission objectives at much lower costs than
traditional, bulky, and expensive spacecraft. These applica-
tions span a wide range of fields, including continuous Earth
monitoring [2,3], communication services [4], large baselines
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Figure 1. Four 1.5U CubeSats were deployed into a sun-
synchronous orbit for the PY4 mission on March 4, 2024 to
demonstrate precise inter-satellite ranging and relative orbit
determination. Our maximum-likelihood estimation achieved
sub-meter accuracy in locating spacecraft ranging with each
other.

for high-resolution radio and optical astronomy [5, 6], and
distributed in-situ measurements of the ionosphere and solar
wind [7, 8].

However, the success of these missions depends critically on
accurate navigation, which currently requires highly special-
ized hardware. Global Navigation Satellite Systems (GNSS)
receivers (e.g., GPS) are commonly used for precise orbit
determination [9, 10]. Yet, significant power constraints and
potential radio frequency interference limit their continuous
use in orbit, resulting in sparse data for navigation. Moreover,
these receivers are expensive and subject to regulatory restric-
tions. To address these challenges, this paper presents a cost-
effective and accessible method for absolute and relative orbit
determination that is scalable to resource-constrained satellite
formations.
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The on-orbit relative navigation problem mirrors terrestrial
sensor network localization [11, 12], where the absolute po-
sitions of each node (i.e., satellite) must be determined from
partial inter-node measurements. Two-way ranging provides
a low-cost method for distance measurements between each
satellite in the formation. However, unlike bearing-only
measurements that have a well-known range ambiguity [13],
ranging alone leads to unobservability in three-dimensional
space, as an infinite number of solutions exist for a single
range measurement.

This paper presents an optimization-based navigation method
to address the on-orbit relative and absolute navigation prob-
lem for a satellite formation, using only range measurements
between satellites, a single “anchor” satellite with global-
frame measurements, and high-accuracy orbital dynamics
models. We evaluate the estimator through numerical ex-
periments and an on-orbit demonstration using data from the
ongoing PY4 mission [14]. This paper makes the following
contributions:

1. An optimization-based batch estimator that fuses range
and anchor measurements, jointly smoothing and determin-
ing the full relative and absolute orbital states of all spacecraft
in a formation.
2. Numerical experiments comparing the performance of star
and mesh formation topologies for both short- and long-range
formations.
3. On-orbit performance evaluation with data from the PY4
satellites, demonstrating the estimator’s robustness on low-
cost hardware with intermittent anchor measurements.

The paper proceeds as follows: Section 2 reviews prior work
on sensor-network localization and orbit determination. In
Section 3, we detail our dynamics and measurement models.
Section 4 introduces the optimization-based batch estimator,
while Section 5 presents a covariance analysis. Section 6
then details several numerical experiments across different
scenarios. Section 7 showcases the on-orbit experimental
results from the PY4 mission. Finally, Section 8 summarizes
our conclusions.

2. RELATED WORKS
In this section, we briefly survey previous research efforts
addressing the problem of sensor-network localization and
navigation for spacecraft formations.

Sensor-Network Localization

Sensor-network localization is well explored and categorized
based on the type of relative measurements used [15]. The
first category combines bearing and range information or uses
relative full-state measurements, simplifying the estimation
to a linear least squares problem. The second, known as
the range localization problem, spans several decades of
exploration and relies solely on distance measurements be-
tween neighboring nodes. However, solving this nonconvex
optimization problem is NP-hard [16]. Eren et al. [17]
showed that a network has a unique localization if the
underlying graph is generically globally rigid. Hendrick-
son [18] proposed a distributed, graph-theoretic divide-and-
conquer approach for the analogous molecule problem with
perfect measurements. Calafiore et al. [12, 19] introduced
a distributed gradient method to reduce the computational
load in large networks. Other methods exploit optimization
structure to relax the problem to semidefinite [20], sum-of-
squares [21], or second-order cone [22] programs.

Localizing a network within a global frame requires knowl-
edge of the absolute positions of a few nodes (anchors) in that
frame. Without this, the network localization is not unique
and is subject to arbitrary rotation and translation. While
anchors are typically assumed, anchor-free methods [23]
have been developed to address this ambiguity. Range-only
localization also faces observability challenges, especially
in 3D, where a single range measurement can yield infinite
possible solutions. Shalaby et al. [24] proposed a framework
incorporating inertial measurement unit (IMU) data and a
two-tag system to provide attitude information with range
measurements, ensuring instantaneous local observability.
Cao et al. [25] used an extended Kalman filter (EKF) to fuse
range and IMU data with a velocity model for a 2D robot,
enhancing system observability.

Range-Only Spacecraft Navigation

Satellite relative navigation has often relied on “angles-only”
or bearing measurements [26, 27]. Radiometric ranging with
omnidirectional antennas is appealing for small satellites due
to its simple implementation on low-cost hardware. Chris-
tian [28] studied observability properties using linear relative
dynamics and found multiple trajectory solutions (2, 4, 8,
or infinite) for the range-only navigation problem depending
on the trajectory characteristics. Mirror solutions produce
identical time histories of range measurements, making it
impossible to distinguish between multiple possible valid
solutions in the linear setting. Turan et al. [29] showed
that in highly observable orbital configurations, less precise
measurements can be effective, while high-frequency ranging
can surprisingly degrade estimator performance. Addition-
ally, they found that a mesh topology provides better state
estimates than a centralized one. It is worth noting that range
measurements lack bearing information; satellites can rotate
arbitrarily while maintaining their inter-distance range. With
only range measurements, our work leverages the nonlineari-
ties in the dynamics model to guide the estimation process.

3. SYSTEM MODELING
We model a formation as a group of passive (unactuated)
satellites orbiting Earth. The satellite that receives measure-
ments relative to the global reference frame (e.g., GPS data,
ground tracking) is termed the chief or anchor satellite, while
the others are referred to as deputy satellites. The state of each
satellite is represented in the Earth-centered inertial (ECI)
frame by a cartesian 6-element state vector:

x =

[
p
v

]
(1)

where p ∈ R3 and v ∈ R3 denote the position and velocity
vectors in the ECI frame, respectively. Equivalently, the
satellite’s state can also be described by the classical orbital
elements [30]

x =


a
e
i
Ω
ω
M

 (2)

where a is the semi-major axis, e is the eccentricity, i is the
inclination, Ω is the longitude of the ascending node (RAAN),
ω is the argument of perigee, and M is the true anomaly [30].
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Figure 2. The four PY4 satellites, a collaboration between Carnegie Mellon University and NASA Ames Research Center,
were launched on March 4, 2024 on the SpaceX Transporter 10 mission and deployed on a sun-synchronous orbit. The 1.5U
satellites demonstrated a suite of novel navigation and control algorithms for low-cost platforms [14].

The motion of a spacecraft in Earth’s orbit is typically ap-
proximated by the two-body dynamical model, where the
only force considered is the central gravitational force exerted
by Earth. This model assumes that Earth’s mass distribution
is spherically symmetric. However, this idealization neglects
perturbing accelerations that introduce significant propaga-
tion errors over time [31]. These perturbations include Earth’s
non-uniform gravitational field, atmospheric drag, the gravi-
tational influences of the Moon and Sun, and solar radiation
pressure. In this work, we focus on formations in low
Earth orbit (LEO) and model the two largest perturbations
— Earth’s non-spherical gravity ag and atmospheric drag
aD [32]:

asat = ag + aD. (3)
The continuous dynamics equations based on Eq. (3) are
integrated to yield discrete-time dynamics using a fourth-
order Runge-Kutta integrator,

xk+1 = fdyn(xk) + wk, (4)

where k is a time step, f is the resulting dynamics propaga-
tion function, and wk is additive noise assumed to be drawn
from a multivariate normal distribution with zero mean and
covariance Q.

Gravity Model

The gravitational force is conservative and can be derived
from a spherical-harmonic geopotential model U ,

U =
GM⊕

∥p∥

∞∑
n=0

n∑
m=0

Rn
⊕

∥p∥n
Pnm(sinϕ)(Cnmcos(mλ) (5)

+ Snmsin(mλ)),

ag = ∇U, (6)
where G is the gravitational constant, M⊕ is the mass of
Earth, ϕ and λ are the latitude and longitude of the spacecraft,
Cnm and Snm are geopotential coefficients obtained from the
EGM2008 model [33], and Pnm is the associated Legendre
polynomial of degree n and order m [32].

Atmospheric Drag

Atmospheric drag accelerations represent the largest non-
gravitational perturbations in LEO and act in the opposite
direction of the spacecraft velocity,

aD = −1

2
CDAρ||vrel||vrel, (7)

where CD is the dimensionless drag coefficient, ρ is the at-
mospheric density, A is the cross-sectional area perpendicular
to the velocity vector, and vrel is the velocity relative to the
atmosphere,

vrel = v −Θ× p, (8)

where Θ is the Earth’s axial rotation.

Accurate predictions of the drag force are challenging due
to the variable nature of atmospheric density (which can
fluctuate by several orders of magnitude over an orbit due
to altitude, weather, and solar activity), interactions between
atmospheric particles and surface materials, and the varying
attitude of the spacecraft. In practical settings, parameters in
Eq.(7), such as ρ, are often estimated online, either directly
or using a multiplicative relative parameterization [34].

Global-Frame Measurements

The chief satellite receives absolute full-state measurements
(e.g. GPS, ground tracking) that can be intermittent,

yecik = geci(xk) = xk + vk, (9)

where vk is additive noise assumed to be drawn from a normal
distribution with zero mean and variance Rv .

Ranging Models

Two-way ranging measurements between satellite i and j
can be modeled as the norm of the difference between their
positions pi and pj ,

yrk = grange(x
i
k, x

j
k) = ||pik − pjk||+ wk, (10)

where wk is additive noise assumed to be drawn from a
normal distribution with zero mean and variance Rw.

A formation of satellites can collect ranging measurements in
either a star (centralized) or mesh (distributed) configuration
as illustrated in Fig. 3. In the star configuration, range
measurements are taken between the chief satellite and each
deputy, whereas the mesh configuration allows each satellite
to range with multiple others.

4. OPTIMIZATION-BASED ESTIMATOR
Given the observability issues encountered when one tries to
reconstruct the full relative states of the deputy spacecraft
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Figure 3. In the star configuration (left), the anchor satellite
performs ranging with all other satellites exclusively. In the
mesh configuration (right), all satellites communicate with
each other.

based solely on range measurements (see Sec. 2), we include
the absolute measurements of the anchor satellite as part of
the estimation problem. In practice, those measurements
(e.g. GPS) can be pre-filtered or smoothed, or combined with
the ranging measurements in the estimation problem. We
leverage the perturbations in our orbital-dynamics model to
break the symmetry of the problem and resulting unobserv-
ability encountered in prior range-only spacecraft localization
studies (see Sec. 2).

Traditionally, recursive Bayesian state-estimation techniques
like the Kalman filter [35] and its many extensions are
widely used for recovering full-state estimates given limited
sensor measurements [36]. However, in situations where
the dynamics are highly nonlinear and measurements are
sparse, a nonlinear batch optimization technique can perform
better. Batch methods formulate the state estimation problem
as an optimization problem that recovers the maximum a-
posteriori (MAP) estimate of the state history given a history
of measurements. The nonlinear optimization problem takes
the generic form,

minimize
z

1

2
r(z, y)T r(z, y)

subject to c(z) = 0,
(11)

where z is the vector of decision variables, y is the vector
of measurements, r is a residual function, and c specifies
equality constraints. Nonlinear programming solvers, such
as IPOPT [37] and SNOPT [38], can be used to solve such
problems.

Because of the high fidelity of our dynamics model, we en-
force the satellites’ dynamics as hard constraints cdyn. Given
the high uncertainty of the drag acceleration, we estimate a
scalar α that scales the nominal atmospheric density from our
model ρmodel to better fit the data:

ρ = αρmodel. (12)

In addition, raw ranging results need to be calibrated to
account for hardware imperfections like delays and clock
offsets. An affine calibration model can be fitted to the mea-
surements yraw and included in the optimization problem,

ycalib = ayraw + b (13)

where a and b are the affine parameters to be estimated.

We can then formulate the batch least-squares problem as,

minimize
x1:N , α, a, b

1

2
r(x, y, a, b)TWr(x, y, a, b)

subject to cdyn(x
a, α) = 0,

cdyn(x
d) = 0,

(14)

where x is a stacked vector of all spacecraft states over the
batch time window with xa and xd indicating, respectively,
the anchor and any other deputy spacecraft and W = R−1

is a weighting matrix. The residual r is defined as a stacked
vector of measurement residuals:

recik = yecik − geci(x
a) (15)

rrk = yrk − grange(x
a
k, x

d
k). (16)

Given the long time scales involved, we leverage the well-
defined sparse structure of the constraint Jacobians to speed
up solve times during our experiments and subsequent anal-
ysis. Note that the optimization (14) is nonconvex and
converges to the nearest local minimum from an initial guess,
a problem that is exacerbated with the presence of mirror
solutions (see Sec. 2). In this work, we use heuristics (see
Sec. 6) to generate a good initial guess for a given scenario.

5. COVARIANCE ANALYSIS
To study the impact of measurement uncertainty on the
estimator outputs, we can map the measurement covariance
matrix R into a state covariance estimate Px using the Jaco-
bian matrix of the residual function, leveraging the implicit
function theorem [39]. An implicit function has the form,

r(x, y) = 0, (17)

where x is the known input vector and y is the unknown
output vector. We can then apply the implicit function
theorem:

r(x, y) =
∂r

∂x
∆x+

∂r

∂y
∆y = 0,

∆y = −(
∂r

∂y
)−1 ∂r

∂x
∆x,

∆y = A∆x.

(18)

We then use the Jacobian A to propagate the input covariance
R to an output covariance on the resulting 3D states:

Px = ARAT . (19)

While this method is straightforward in standard least-squares
settings, our constrained optimization formulation necessi-
tates a few additional steps [40]. We apply (18) instead to
the associated Lagrangian of the optimization problem,

L(x, y, λ) = 1

2
r(x, y)T r(x, y) + λT c(x), (20)

where r is the residual function, x is the stacked satellite
states over the batch horizon, y is a vector containing all
measurements, λ is a vector of Lagrange multipliers, and c(x)
is the vector of equality constraints. The derivation follows
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with the vector of stacked variables z = [xT λT ]T :

L(z, y) = ∂L
∂z

∆z +
∂L
∂y

∆y = 0,

∆z = −
(
∂L
∂z

)−1
∂L
∂y

∆y, (21)

∆z = A∆y,

where the necessary Jacobian ∂L
∂z is retrieved through the

Karush–Kuhn-Tucker (KKT) matrix [41, 42]:

∂L
∂z

=

[
∇2

xL(x, λ) ∇c(x)T

∇c(x) 0

]
. (22)

6. NUMERICAL EXPERIMENTS
We conducted numerical experiments to evaluate the perfor-
mance of the estimator for both star and mesh topologies in
two distinct scenarios (see Table 2) over one hour:

1. Post-deployment drift immediately following spacecraft
deployment
2. Long-distance ranging

Optimization problems were solved using the IPOPT solver
[37]. Ground truth data was generated with a fine discretiza-
tion and a high-fidelity dynamics model that includes high-
order gravity terms, atmospheric drag, third-body influences,
and solar radiation pressure. The estimator dynamics follow
the model described in Sec. 3, incorporating a 10th-order
gravity model, atmospheric drag, and a 5-second timestep.
Satellite parameters were set to a mass of 2 kg, a cross-
sectional area of 0.1 m2, and a drag coefficient CD of 2. The
measurement uncertainty 1σ were 1.5 m, 1.5 cm/s, and 0.5 m
for, respectively, the GPS position, GPS velocity, and range
(taken from the datasheet of our hardware in Sec. 7). We
chose a measurement sampling period of 60 seconds to reflect
the power constraints encountered by small satellites.

Post-Deployment Drift

When satellites are deployed sequentially with slightly dif-
ferent initial conditions, relative position and velocity drifts
occur among them. To simulate realistic conditions for
sequentially deployed satellites, we model a sun-synchronous
orbit [43] and perturb the relative states of the deputy space-
craft using Gaussian distributions with covariances of 10 m
and 0.1 m/s, leading to relative distances of 2–4 km after one
hour. In such cases, the estimator can be initialized using
anchor GPS measurements and dynamics propagation for all
satellites.

Long-Distance Ranging

We simulate a scenario where the satellites have a significant
initial separation distance ranging from 5 km to 25 km. These
longer distances produce noticeable differences in orbital
dynamics compared to the deployment case, thus making the
problem more observable. However, they also make it diffi-
cult to initialize the nonlinear estimator without an efficient
heuristic. We initialize the estimator by sampling orbital
elements around the anchor GPS measurements, applying de-
viations in the semi-major axis, inclination, and eccentricity
within the range defined by the first range measurement. Each
sampled state is propagated, and the residual between the

predicted trajectory and range is computed. The initial state
is selected by minimizing the average squared residuals of the
candidate trajectories.

Results

Satellite B

Satellite C

Satellite D

Figure 4. 3-σ position deviation for the three simulated
deputy satellites. For each satellite, the top figure corresponds
to the post-deployment case, and the bottom one to the
long-range case. The mesh configuration tends to reduce
uncertainty compared to the star configuration.

Table 1 presents the absolute localization performance for
the four-satellite formation in post-deployment and long-
distance scenarios evaluated using star and mesh formation
configurations. RMS position and velocity values are derived
from the propagated state covariance matrix. Both scenarios
show similar performance, demonstrating the robustness of
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Table 1. Absolute localization errors for a four-satellite formation in post-deployment and long-distance scenarios with
star and mesh configurations.

Satellite A Satellite B Satellite C Satellite D

Post-deployment
Star

RMS position [m] 0.2031 0.3168 0.2504 0.4634
RMS velocity [m/s] 0.0002 0.0003 0.0002 0.0004

Mesh
RMS position [m] 0.2031 0.2105 0.2110 0.2134
RMS velocity [m/s] 0.0002 0.0002 0.0002 0.0002

Long-distance
Star

RMS position [m] 0.2030 0.2844 0.3683 0.2567
RMS velocity [m/s] 0.0002 0.0003 0.0004 0.0002

Mesh
RMS position [m] 0.2030 0.2124 0.2133 0.2072
RMS velocity [m/s] 0.0002 0.0002 0.0002 0.0002

Table 2. Initial conditions of the anchor for the two
simulated high-inclination sun-synchronous orbits.

Orbital elements Post-deployment Long distance
a 6995 km 6880 km
e 1e−4 6e−4

i 97.85◦ 97.41◦

Ω 196.92◦ 269.76◦

ω 148.25◦ 233.29◦

M 225.43◦ 342.07◦

Table 3. Relative localization accuracy for
post-deployment (P) and long-distance (L) scenarios.

Mean RMS
Relative

distance [m]
Relative

velocity [m/s]
Star (P) 0.7170 0.0045

Mesh (P) 0.4943 0.0010
Star (L) 0.3585 0.0023

Mesh (L) 0.5004 0.0014

the estimator to range distances up to 30 km. The full mesh
configuration consolidates RMS errors across all satellites,
yielding around 0.2m and 0.0002 m/s for both scenarios. As
expected, Satellite A, the anchor, achieves the best localiza-
tion, while the mesh configuration effectively reduces errors
for the other satellites to the anchor level.

For relative states, Table 3 shows an improvement in local-
ization with the mesh formation. The positioning uncertainty
(1σ) is approximately 0.01% of the maximum satellite range
in the post-deployment star and mesh configurations and
improving to around 0.001% in the other long-distance cases.

Figure 4 illustrates the covariance trajectory for the position
of the non-anchor satellites B, C, and D over the time horizon
in both scenarios. We can observe that the mesh configuration
achieves a 1.5x to 3x reduction in uncertainty at close range,
although this advantage diminishes slightly in the long-
range scenario. Moreover, the star configuration exhibits
significantly more variability in uncertainty throughout the
trajectory, whereas the mesh configuration provides a more
stable and uniform uncertainty across all states. This suggests
that adding additional crosslinks between nodes offers a

robust strategy for reducing uncertainty, thereby enhancing
localization performance.

7. ON-ORBIT DEMONSTRATION
The four 1.5U PY4 CubeSats, shown in Fig. 2, were deployed
into an initial 515 km altitude circular sun-synchronous orbit
at a 97.5◦ inclination on March 4, 2024, via the SpaceX
Transporter 10 mission. One of the primary mission objec-
tives was to demonstrate precise inter-satellite ranging and
relative orbit determination [14].

Figure 5 shows a high-level depiction of the relevant onboard
communication architecture. Two-way time-of-flight ranging
was conducted using S-band Semtech SX1280 LoRa radio
modules with a 0.5 W transmit power, utilizing LoRa chirp
spread-spectrum modulation [44]. The SX1280 hardware-
level ranging offers meter-level accuracy with proper cali-
bration, making it a low-cost CubeSat navigation solution.
Each satellite also carried a NovAtel OEM719 GPS receiver
for ground-truth validation, with data precisely timestamped
by the onboard GPS. The 1σ measurement uncertainties for
the estimator is extracted from the datasheets of the GPS and
radio: 1.5 m, 1.5 cm/s, and 0.5 m for, respectively, the GPS
position, GPS velocity, and LoRa range measurements.

Figure 5. High-level radio architecture for the PY4 satellites.
Each CubeSat carries a NovAtel OEM719 GPS receiver,
Semtech SX1280 S-band LoRa radio module to perform
cross-link communication and two-way time-of-flight rang-
ing, and a Semtech SX1276 UHF LoRa radio module for
ground communications [14].
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Table 4. On-orbit localization results for PY4-B and
PY4-C, showing RMS values for the trajectory and the

smallest (best) single-measurement error.

PY4-B PY4-C

Absolute Position (RMS) [m] 0.2126 0.3305
Absolute Position (best) [m] 0.1892 0.2578
Absolute Velocity (RMS) [m/s] 0.0002 0.0003
Absolute Velocity (best) [m/s] 0.0001 0.0002
Relative Position (RMS) [m] 0.0138
Relative Position (best) [m] 0.0105
Relative Velocity (RMS) [m/s] 6.58×10−5

Relative Velocity (best) [m/s] 9.0×10−6

Figure 6. Estimated inter-satellite range (blue) and indi-
vidual range measurements (red) showing close agreement.
The raw range measurements were calibrated with an affine
model.

Ranging measurements were collected between PY4-B (an-
chor) and PY4-C (deputy) over a 64-minute period. Af-
ter downlink, the dataset was post-processed and time-
synchronized before input to the estimator. The spacecraft
performed ranging measurements every 60 seconds. Unlike
the simulations in Sec. 6, GPS positions were relatively
sparse and variable (period ranging from 1 to 3 minutes).
Despite this, the estimator managed to achieve sub-meter ac-
curacy for both spacecraft, as shown in Table 4. As expected,
PY4-B is better-localized given its anchor status. Note
that the simulated results in Sec. 6 did not include a range
calibration model or atmospheric drag estimation, explaining
the improved performance in the on-orbit experiments.

Figure 6 shows the estimated inter-satellite range (blue)
closely matching the calibrated range measurements (red).
Figure 7 illustrates the 3D trajectory of PY4-C relative to
PY4-B with the individual range measurements in the Local-
Vertical-Local-Horizontal (LVLH) frame. We note that PY-
4C exhibited significant drift in the along-track direction.

Figure 7. Estimated 3D spacecraft trajectory of PY4-C
relative to PY4-B (blue) and individual range measurements
(red) during the 64-min time window in the Local-Vertical-
Local-Horizontal frame. The estimator achieved a relative
positioning accuracy of 0.0138 m.

8. CONCLUSION
We presented a navigation method for relative and absolute
orbit determination of a satellite formation using only range
measurements and a single anchor satellite. A high-accuracy
dynamics model enables a batch nonlinear least-squares esti-
mator to address ambiguities inherent in range-only naviga-
tion. Numerical experiments with star and mesh configura-
tions demonstrated that the additional measurements from a
mesh approach can increase the robustness and accuracy of
estimates. Our on-orbit experiments with the PY4 satellites
validated our method on low-cost hardware with intermittent
anchor measurements.

A major limitation of our method is the inherent nonconvexity
of the estimation problem, making the solution dependent on
solver initialization. While on-the-ground processing can rely
on expert tuning and heuristics, convergence to mirror solu-
tions from poor initializations could still present problems for
deployment in a fully autonomous on-orbit scenario.

Much room for future work on range-based satellite navi-
gation remains: First, we plan to perform an in-depth ob-
servability analysis that accounts for drag and higher-order
gravity perturbations in the dynamics, as well as spacecraft
formation geometry. Second, we will systematize the initial-
ization heuristics used in this work in an effort to build a fully
autonomous system suitable for on-orbit deployment.
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