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A general method for deriving variational integrators for systems with quaternion state variables is introduced.
These integrators exhibit realistic energy and momentum behavior while having computational costs comparable
to or less than low-order Runge-Kutta methods, making them suitable for both simulation and real-time estima-
tion and control applications. Integrators are derived for several systems including rigid bodies with momentum
actuators and internal viscous damping. Numerical examples illustrate the performance of the integrators and an
application to attitude determination using an extended Kalman filter is presented.

Nomenclature
C = damping constant, kg ·m2 · s−1

F = quaternion generalized force, kg ·m2 · s−2

Fd = discrete generalized force, kg ·m2 · s−1

f, q = unit quaternions
h = time step, s
I = inertia matrix in body-fixed axes, kg ·m2

J = augmented inertia matrix in body-fixed axes, kg ·m2

k = time index
L = Lagrangian, kg ·m2 · s−2

Ld = discrete Lagrangian, kg ·m2 · s−1

m = rotor mass, kg
p = angular momentum in body-fixed axes, kg ·m2 · s−1

S = action, kg ·m2 · s−1

Sd = discrete action, kg ·m2 · s−1

t = time, s
x = rotor position in body-fixed axes, m
γ, φ = three-parameter incremental rotations
δ = variational derivative
ε = small scalar
η = arbitrary perturbation
ρ = rotor angular momentum in body-fixed axes, kg ·m2 · s−1

τ = external torque in body-fixed axes, kg ·m2 · s−2

ω = angular velocity in body-fixed axes, rad · s−1

I. Introduction
Variational integrators have many advantages over Runge-Kutta meth-
ods and other traditional algorithms for numerically integrating equa-
tions of motion for mechanical systems. Rather than deriving differ-
ential equations of motion for a given system in continuous time, then
discretizing them, variational approaches begin by discretizing the La-
grangian and the action integral for the system. The tools of variational
mechanics are then used to derive discrete-time equations of motion.
Integrators derived in this way retain many of the properties of the
continuous system, such as momentum and energy conservation [1].
These integrators are also computationally efficient and stable, even
for relatively large fixed time steps, making them well suited for use in
real-time estimation and control applications.

Examples of integration methods that respect motion integrals of
mechanical systems, often called geometric or symplectic integrators,
have been known for decades. The classic example is the Verlet or
Störmer-Verlet method [2, 3]. These early methods were often devised
in ad hoc ways that do not generalize well to arbitrary mechanical sys-
tems or higher orders of accuracy. More recently, systematic methods
for deriving symplectic integrators using discrete-time versions of ideas
from variational mechanics have been introduced [1]. These methods
are straightforward applications of Lagrangian and Hamiltonian dy-
namics, and they can generate integration schemes of any desired order
of accuracy.
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Discrete variational mechanics has previously been applied to
problems in rigid body dynamics and the optimal control of rigid bod-
ies using rotation matrices to parameterize attitude [4–6]. Momentum-
preserving integrators have also been derived by other (non-variational)
means for rigid body dynamics using quaternions to parameterize atti-
tude [7–11]. The primary contribution of this paper is the application
of discrete variational mechanics to spacecraft attitude dynamics using
quaternion state variables. The emphasis on quaternions over other at-
titude parameterizations here is due to both the compact and elegant
derivations they enable and their prevalence in the implementation of
spacecraft guidance, navigation, and control algorithms. Specifically,
they lend themselves to straightforward feedback control and estima-
tion schemes of practical relevance in flight software.

The paper proceeds as follows. Section II gives a brief review of
quaternions and outlines the notation used throughout the paper. Sec-
tion III derives the classical Euler equation of rigid body dynamics in
continuous time using Hamilton’s principle. Next, section IV presents
this derivation in discrete time, leading to the variational integrator pre-
sented in section V. Sections VI–VIII incorporate several extensions
to the basic rigid body integrator, including reaction wheels, external
torques, and internal damping. Finally, in section IX several numer-
ical examples are presented, including an extended Kalman filter for
attitude determination.

II. Background
Attitude dynamics and rotations are parameterized with quaternions
throughout this paper. A brief review of their properties is presented
in this section. A more thorough treatment is given by Altmann [12].

Quaternions form an algebra with a non-commutative binary prod-
uct operation. It is often convenient to think of them as four-
dimensional objects composed of a three-dimensional vector part v and
a scalar part s.

q =
[
v
s

]
(1)

This representation allows the quaternion product to be written in terms
of scalar and vector products:

q1q2 =

[
v1 × v2 + s1v2 + s2v1

s1 s2 − v1 · v2

]
(2)

Note that q1q2 6= q2q1. Throughout the paper, quaternion products are
indicated by juxtaposition, while scalar and vector products are indi-
cated in the usual way, with the · and × symbols respectively.

Rotations can be conveniently represented by unit-length quater-
nions. If r is a unit vector in R3 representing the axis of rotation and θ
is the angle of rotation, then the quaternion representing the rotation is
as follows:

q =
[
r sin(θ/2)
cos(θ/2)

]
(3)

Both q and −q correspond to the same rotation, making the unit quater-
nions a “double cover” of the group of rotations.
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The conjugate of a quaternion is denoted with a superscript † and
represents the rotation about the same axis r by −θ.

q† =
[
−v
s

]
(4)

Two rotations can be composed by multiplying their quaternion repre-
sentations. A quaternion q3 representing a rotation q1 followed by a
rotation q2 is simply q3 = q2q1. The rotation of a three-dimensional
vector x by a unit quaternion q is

x̂′ = qx̂q† (5)

where x̂ indicates the formation of a quaternion with zero scalar part
from the vector x:

x̂ =
[
x
0

]
(6)

Analytic functions can be defined for quaternion arguments in
much the same way as for complex numbers and matrices. In particu-
lar, the quaternion exponential has a simple closed-form expression in
terms of the quaternion’s scalar and vector parts:

eq =

∞∑
n=0

qn

n!
= es

[ v
|v| sin(|v|)
cos(|v|)

]
(7)

The formula for a rotation quaternion in equation (3) can be compactly
written in terms of the exponential:

er̂θ/2 =

[
r sin(θ/2)
cos(θ/2)

]
(8)

Finally, in addition to the purely algebraic properties of quaternions
outlined so far, the subsequent analysis requires some kinematic iden-
tities relating quaternion derivatives to vector quantities more familiar
in rigid body dynamics. First, the time derivative of a body’s attitude
quaternion is related to its angular velocity in the following way:

ω̂ = 2q†q̇ (9)

Second, the quaternion generalized force corresponding to a torque on
the body is [13, 14]

F = 2qτ̂ (10)

Schaub and Junkins provide a thorough discussion of rigid body dy-
namics using quaternions [15].

III. Euler’s Equation from Hamilton’s Principle
This section presents a detailed derivation of the classical Euler equa-
tion using Hamilton’s principle. While the results are not new, the tech-
niques used provide the foundation for the development of the varia-
tional integrators in the following sections. A more in-depth treatment
of variational mechanics on Lie groups, including the rotation group
SO(3), is given by Holm [16].

The derivation begins with the Lagrangian for a free rigid body
which, in the absence of a potential, is simply its kinetic energy:

L =
1
2
ω · I · ω =

1
2
ω̂ · J · ω̂ (11)

J is the following augmented inertia matrix:

J =


I11 I12 I13 0
I21 I22 I23 0
I31 I32 I33 0
0 0 0 0

 (12)

Following the standard approach in variational mechanics [17, 18], an
action integral is constructed and its variational derivative is taken.

δS = δ
∫ t f

t0

1
2
ω̂ · J · ω̂ dt = 0 (13)

At this point one must be careful to take variations of ω in such a
way that the quaternion unit-norm constraint is maintained. There are
several ways of explicitly enforcing the constraint in the action integral

[14,19]. An alternative is to incorporate the constraint into the variation
[4,6,16]. From the fact that the exponential of a quaternion having zero
scalar part is always a unit quaternion, a varied unit quaternion can be
defined as

εq = qeεη̂ (14)

where a left superscript ε is used to denote a varied quantity. Next, εq
is differentiated with respect to time.

ε q̇ = q̇eεη̂ + εqeεη̂ ˙̂η (15)

Equations (14) and (15) can be substituted into the identity in equation
(9) to obtain the desired variation ofω, keeping in mind that only terms
linear in ε need to be retained.

εω̂ = 2 εq† ε q̇ = e−εη̂ ω̂ eεη̂ + 2ε ˙̂η ≈ ω̂ + ε(ω̂η̂ − η̂ω̂ + 2ε ˙̂η) (16)

Using equation (16), the variational derivative of the action integral
in equation (13) is

δS =
d
dε

∣∣∣∣∣
ε=0

∫ t f

t0

1
2
εω̂ · J · εω̂ dt =

∫ t f

t0

ω̂ · J · (2ω̂η̂ + 2˙̂η) dt = 0 (17)

Following the usual procedure, integration by parts is used to eliminate
˙̂η, noting that variations must be zero at the endpoints of the integration
interval.

δS =
∫ t f

t0

2ω̂ · J · ω̂η̂ − 2 ˙̂ω · J · η̂ dt = 0 (18)

Since all of the quaternions in equation (18) have scalar parts equal to
zero, it can be converted to vector form:

δS =
∫ t f

t0

ω · I · (ω × η) − ω̇ · I · η dt = 0 (19)

Using the fact that cyclically permuting the factors in a scalar triple
product does not change its value, equation (19) can be rewritten as

δS =
∫ t f

t0

η · ((I · ω) × ω) − ω̇ · I · η dt = 0 (20)

Finally, recognizing that equality must hold for all perturbations η re-
sults in Euler’s equation.

I · ω̇ + ω × I · ω = 0 (21)

IV. A Discrete-Time Euler’s Equation
This section derives an algebraic equation that is a discrete-time ana-
logue of Euler’s equation. The ideas used, collectively known as dis-
crete mechanics, are presented in detail by Marsden and West [1]. The
derivation here roughly follows that of Lee, Leok, and McClamroch [4]
but uses quaternions where they have used rotation matrices.

The point of departure from classical mechanics is the action in-
tegral in equation (13). It is first broken into finite short segments of
length h, with tk = t0 + kh.

S =
∫ t f

t0

1
2
ω̂ · J · ω̂ dt =

N−1∑
k=0

∫ tk+1

tk

1
2
ω̂ · J · ω̂ dt (22)

The integral of the Lagrangian over a single time step h inside the sum-
mation on the right hand side of equation (22) is known as the exact
discrete Lagrangian [1].

LE
d =

∫ tk+1

tk

1
2
ω̂ · J · ω̂ dt (23)

The next step is to approximate LE
d using a quadrature rule. Any

quadrature rule for approximating integrals can be used for this pur-
pose, with higher-order rules generally leading to higher-order varia-
tional integrators [1]. The resulting approximation is known as the dis-
crete Lagrangian of the system. In general, different quadrature rules
lead to different discrete Lagrangians. For simplicity and clarity, the
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rectangle rule is used here. First, a finite difference approximation of
ω is defined.

ω̂k = 2 q†k q̇k ≈ 2 q†k
(qk+1 − qk

h

)
= 2

(
fk − 1

h

)
(24)

The quaternion rotation from qk to qk+1 is denoted by fk = q†kqk+1. Sub-
stituting the approximation for ω̂k into equation (23), applying the rect-
angle rule, and simplifying leads to the following discrete Lagrangian:

Ld =
2
h

fk · J · fk (25)

Using equation (25), the discrete action sum for the system can be
formed:

S d =

N−1∑
k=0

Ld =

N−1∑
k=0

2
h

fk · J · fk (26)

Equation (26) approximates equation (22) and serves the same role in
discrete mechanics as the action integral does in traditional variational
mechanics [1]. Analogously to the continuous case, Hamilton’s Prin-
ciple is applied to the action sum. First, a varied fk that obeys the unit
quaternion constraint is needed.

ε fk =
εq†k

εqk+1 = e−εη̂ fkeεη̂ ≈ fk + ε( fkη̂k+1 − η̂k fk) (27)

Using ε fk, the variation of the action sum is set equal to zero.

δS d =
d
dε

∣∣∣∣∣
ε=0

N−1∑
k=0

2
h
ε fk · J · ε fk =

N−1∑
k=0

4
h

fk · J · ( fkη̂k+1 − η̂k fk) = 0 (28)

The next step is to eliminate ηk+1 from the right hand side of equa-
tion (28) by performing the discrete equivalent of integration by parts,
which amounts to some simple index manipulation.

δS d = fN−1·J· fN−1η̂N− f0·J· f0η̂0+

N−1∑
k=1

4
h

fk−1·J·( fk−1η̂k−η̂k fk) = 0 (29)

Using the fact that variations at the endpoints must be zero, just as in the
continuous case, the first two terms in equation (29) can be eliminated.

δS d =

N−1∑
k=1

4
h

fk−1 · J · ( fk−1η̂k − η̂k fk) = 0 (30)

At this point equation (30), which implicitly includes unit-norm
constraints on the quaternions, is converted to an unconstrained vector
equation by parameterizing fk in the following way:

fk =

[
φk√

1 − φk · φk

]
(31)

This parameterization is only valid for |φk | < 1. Therefore, h must be
chosen small enough to ensure that the incremental rotations between
adjacent time steps are less than 180°. A number of other 3-parameter
attitude representations could be used instead (modified Rodriguez pa-
rameters, for example), however, equation (31) is a natural choice that
leads to simple and elegant expressions.

In terms of φk, equation (30) is

N−1∑
k=1

(√
1 − φk · φk ηk · I · φk − φk · I · (φk × ηk)

−
√

1 − φk−1 · φk−1 ηk · I · φk−1 − φk−1 · I · (φk−1 × ηk)
)
= 0 (32)

Recognizing that equation (32) must be true for all ηk and performing
some simple vector algebra reveals an algebraic equation relating φk,
the incremental rotation from the last time step to the current time step,
to φk+1, the incremental rotation from the current time step to the next
time step.√

1 − φk · φk I ·φk −φk × I ·φk =
√

1 − φk+1 · φk+1 I ·φk+1 +φk+1 × I ·φk+1
(33)

As a brief aside, equation (33) bears some resemblance to the clas-
sical Euler’s equation. Taking its limit as h goes to zero does, in fact,
recover equation (21). This result confirms that the discrete-time equa-
tion converges to the true differential equation for small time steps and
establishes consistency with the continuous theory.

V. A Variational Integrator for the Free Rigid Body

This section uses equation (33) as the starting point for the development
of a variational integrator for the unforced rigid body. The additional
ingredients needed are a way to initialize the integrator given an atti-
tude q0 and angular velocity ω0, a way to update the attitude qk+1 and
angular velocityωk+1 after solving for φk+1, and a way to solve equation
(33) for φk+1 given φk.

While it might seem simple enough to approximate φ0 in any num-
ber of ways givenω0, ad hoc approaches do not maintain the variational
integrator’s conservation properties. The discrete Legendre transform
[1] gives a consistent way to convert between φk and ωk. Similar to
the classical Legendre transform [17], it maps from φk (which is effec-
tively the discrete-time velocity variable) to pk, the momentum at time
k, which can then be multiplied by I−1 to recover ωk. Unlike the con-
tinuous version, there are actually two discrete Legendre transforms for
a given time step [1]:

p−k = −
∂Ld(qk, qk+1)

∂qk
· δqk (34)

p+k =
∂Ld(qk, qk+1)

∂qk+1
· δqk+1 (35)

Applying these transformations to the discrete Lagrangian in equation
(25) reveals that p−k and p+k correspond to the left and right sides of
equation (33).

p−k =
2
h

√
1 − φk · φk I · φk − φk × I · φk (36)

p+k =
2
h

√
1 − φk+1 · φk+1 I · φk+1 + φk+1 × I · φk+1 (37)

This result leads to several key conclusions. First, equations (36)
and (37) provide a new interpretation of the discrete-time equation of
motion as a momentum balance between adjacent time steps. Second,
equation (36) can be used to initialize the integrator by solving for φ0
given I and ω0. Lastly, pk, and hence ωk, can be calculated at any point
during the integration using either equation (36) or (37).

The final missing piece of the integrator is a method for solv-
ing equation (33), which is both implicit and nonlinear. Newton’s
method, which amounts to solving successive linear approximations
of the equation until a desired level of accuracy is achieved [3, 20],
provides an efficient solution in this case. The necessary linear approx-
imation is the Jacobian matrix of equation (37)

∂pk

∂φk+1
=

2
h

(√
1 − φᵀ

k+1φk+1 I−
Iφk+1φ

ᵀ
k+1√

1 − φᵀ
k+1φk+1

+skew(φk+1)I−skew(Iφk+1)
)

(38)
where skew(φ) indicates the skew-symmetric matrix-multiplication
equivalent of the cross product opperation.

skew


φ1
φ2
φ3


 =

 0 −φ3 φ2
φ3 0 −φ1
−φ2 φ1 0

 (39)

Three or four Newton iterations are sufficient to reach machine preci-
sion in all of the examples presented in section IX using standard 64
bit floating-point arithmetic. Once φk+1 is computed, the attitude can be
updated by simple quaternion multiplication with the previous attitude
qk+1 = qk fk.

In summary, given an inertia I and initial conditions q0 and ω0, the
integrator is initialized by computing the momentum p0 = I · ω0 and
an initial guess for φ0. A reasonable guess is φ0 ≈

h
2ω0. The true value

of φ0 is then calculated to machine precision using Newton’s method
with equations (37) and (38). From φ0, p1 is calculated using equation
(36), followed by ω1 and q1. The process is then repeated as desired.
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VI. Gyrostats
A gyrostat is a system of coupled rigid bodies whose relative motions
do not change the total inertia tensor of the system [21]. A practical ex-
ample is a rigid body with internal rotors or momentum actuators that
can spin relative to the carrier body, such as a spacecraft with reaction
wheels. Using the variational framework developed in the previous sec-
tions, both the classical equations of motion and a variational integrator
are straightforward to derive.

The Lagrangian for a gyrostat system is

L =
1
2
ωB · IB ·ωB+

N∑
r=1

1
2

(ωB+ωr) · Ir ·(ωB+ωr)+
1
2

mr(ωB×xr)2 (40)

where IB and ωB are the carrier body’s inertia tensor and angular ve-
locity, the Ir are the rotor inertia tensors, the ωr are the rotor angular
velocities relative to the carrier body, and the xr are the rotor positions
relative to the carrier body’s center of mass. The Lagrangian can be
simplified by introducing a modified body inertia I′B which includes
the rotor masses:

I′B = IB −

N∑
r=0

mr skew(xr)2 (41)

Substituting I′B into equation (40) eliminates the last term, giving the
simpler expression

L =
1
2
ωB · I′B · ωB +

N∑
r=1

1
2

(ωB + ωr) · Ir · (ωB + ωr) (42)

The rotor angular velocities ωr are treated as exogenous inputs to
the system that can be set arbitrarily (e.g. by a controller), so variations
need only be taken with respect to ωB. This fact makes the derivation
for the gyrostat nearly identical to the free rigid body. The only differ-
ence is that a few extra terms involving Ir and ωr are carried through.
Using εωB to vary the action and following the rest of the steps in sec-
tion III results in the following differential equation:

I′B ·ω̇B+ωB×I′B ·ωB+

N∑
r=1

Ir ·ω̇B+ωB×Ir ·ωB+Ir ·ω̇r+ωB×Ir ·ωr = 0 (43)

Two new definitions help simplify equation (43). First, the gyrostat
inertia IG is

IG = I′B +
N∑

r=0

Ir = IB +

N∑
r=0

Ir − mr skew(xr)2 (44)

Second, ρ is the total angular momentum stored in all the rotors.

ρ =
Nr∑
r=1

Ir · ωr (45)

Substituting IG and ρ into equation (43) results in the classical equation
of motion for the gyrostat [21]:

IG · ω̇B + ωB × (IG · ωB + ρ) + ρ̇ = 0 (46)

The steps involved in deriving the discrete-time equivalent of equa-
tion (46) are now briefly highlighted. If ωB is approximated as in equa-
tion (24) and the rectangle rule is used, the discrete Lagrangian for the
gyrostat is

Ld =
2
h

(
fk · J′B · fk +

N∑
r=1

( fk +
h
2
ω̂r,k) · Jr · ( fk +

h
2
ω̂r,k)

)
(47)

where J′B and Jr are the augmented 4×4 equivalents of I′B and Ir. The
discrete action sum S d can then be formed as in equation (26) and its
variation taken using ε fk from equation (27).

δSd =

N−1∑
k=0

(
fk ·JB ·( fkη̂k+1−η̂k fk)+

N∑
r=1

( fk+
h
2
ω̂r,k)·Jr ·( fkη̂k+1−η̂k fk)

)
= 0

(48)

Following the rest of the steps in section IV and substituting in IG and
ρ results in the discrete-time gyrostat equation:

√
1 − φk · φk (IG · φk +

h
2
ρk) − φk × (IG · φk +

h
2
ρk)

=
√

1 − φk+1 · φk+1 (IG · φk+1 +
h
2
ρk+1) + φk+1 × (IG · φk+1 +

h
2
ρk+1)

(49)

Equation (49) can be directly substituted into the variational inte-
grator developed in section V. The only other change necessary is to
the Jacobian in the Newton iteration:

∂p+

∂φk+1
=

2
h

(√
1 − φᵀφ I −

Iφφᵀ√
1 − φᵀφ

+ skew(φ)I

− skew(Iφ) −
h
2

ρφᵀ√
1 − φᵀφ

−
h
2

skew(ρ)
)

(50)

VII. External Torques
External torques can be incorporated into the variational framework
using the Lagrange-D’Alembert principle (often known simply as
D’Alembert’s principle) [17, 18]. In particular, its integral form [1, 22]

δ

∫ t f

t0

L dt +
∫ t f

t0

F · δq dt = 0 (51)

is most readily applied here, where the term on the left is simply the
variation of the action δS and the term on the right is the integral of the
virtual work done by a generalized force F.

To apply the Lagrange-D’Alembert principle to a rigid body, the
expression for the quaternion generalized force given in equation (10),
as well as the variational derivative of the attitude quaternion δq, are
substituted into the second term of equation (51).∫ t f

t0

F · δq dt =
∫ t f

t0

2qτ̂ · (qη̂) dt (52)

A little algebra reveals that (qτ̂) · (qη̂) = τ · η, further simplifying the
expression. Combining this result with the action term from equation
(18) leads to the following equation:∫ t f

t0

2ω̂ · J · ω̂η̂ − 2 ˙̂ω · J · η̂ + 2τ̂ · η̂ dt = 0 (53)

It is then straightforward to work through the rest of the steps in section
III to arrive at the forced Euler equation:

I · ω̇ + ω × I · ω = τ (54)

Incorporating forcing into the discrete variational framework is a
bit more subtle than in the continuous case. The discrete version of the
Lagrange-D’Alembert principle is

δ

N∑
k=0

Ld +

N∑
k=0

F−d · δqk + F+d · δqk+1 = 0 (55)

where F−d and F+d are known as discrete generalized forces [1]. Similar
to what is encountered with the discrete Legendre transform, there are
two discrete generalized forces corresponding to the beginning and end
of a time step:

F−d =
∫ tk+1

tk

1
2

F(q, q̇) ·
∂q(t)
∂qk

dt (56)

F+d =
∫ tk+1

tk

1
2

F(q, q̇) ·
∂q(t)
∂qk+1

dt (57)

As with the discrete Lagrangian, the integrals in the definition of
the discrete generalized forces are approximated by quadrature. Here
the rectangle rule is used, though more accurate quadrature rules can
lead to more accurate integrators at the expense of increased computa-
tional burden.

F−d ≈ hqkτ̂k (58)
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F+d ≈ hqk+1τ̂k+1 (59)

Substituting the approximations for F−d and F+d , as well as the discrete
Lagrangian for the rigid body from equation (25), into equation (55)
results in

δ

N∑
k=0

2
h

fk · J · fk +

N∑
k=0

hqkτ̂k · δqk + hqk+1τ̂k+1 · δqk+1 = 0 (60)

Carrying out the variational derivatives leads to the following:

N∑
k=0

4
h

fk · J · ( fkηk+1 − ηk fk) + hτ̂k · η̂k + hτ̂k+1 · η̂k+1 = 0 (61)

Eliminating the ηk+1 terms again requires a “discrete integration by
parts.” Manipulating indices results in

N∑
k=1

4
h

fk−1 · J · ( fk−1ηk − ηk fk) + 2hτ̂k · η̂k = 0 (62)

Retracing the remaining steps in section IV yields the discrete-time
equation of motion for the forced rigid body:√

1 − φk · φk I · φk − φk × I · φk

=
√

1 − φk+1 · φk+1 I · φk+1 + φk+1 × I · φk+1 +
h2

2
τk+1 (63)

This result can also be readily applied to the forced gyrostat by adding
the same torque term onto the right hand side of equation (49).

VIII. A Gyrostat Spacecraft With Damping
The tools developed up to this point enable the construction of a vari-
ational integrator for a gyrostat with an internal energy-dissipating
mechanism. The mechanism considered here is known as a Kane
damper and consists of a spherical mass immersed in a viscous fluid
inside a spherical cavity in the spacecraft body [23]. The torque ex-
erted on the spacecraft by the damper is

τ = C(ωD − ωB) (64)

where C is a damping constant, ωD is the damper angular velocity, and
ωB is the body angular velocity.

The basic approach taken here is to treat the body and damper
as separate rigid bodies coupled through the viscous damping force.
Equation (64) is approximated by finite differences in the usual way,
giving

τk ≈
2
h

C(γk − φk) (65)

where φk is the incremental body rotation defined in equation (31) and
γk is the analogous incremental rotation for the damper. Substituting
this approximation into equation (63) yields a set of coupled equations
for the gyrostat-damper system:

√
1 − φk · φk (IG · φk +

h
2
ρk) − φk × (IG · φk +

h
2
ρk)

=
√

1 − φk+1 · φk+1 (IG · φk+1 +
h
2
ρk+1) + φk+1 × (IG · φk+1 +

h
2
ρk+1)

+ hC(γk+1 − φk+1) (66)√
1 − γk · γk ID =

√
1 − γk+1 · γk+1 ID · γk+1 − hC(γk+1 − φk+1) (67)

These equations take advantage of the fact that the damper is spherical,
and thus has an inertia tensor that is a scalar multiple of the identity, to
eliminate the cross product term in equation (67).

Equations (66) and (67) must be solved simultaneously for φk+1
and γk+1. Once again, Newton’s method is used, this time with both
equations combined to form a single six-dimensional system. The nec-
essary 6×6 Jacobian matrix is easily derived in terms of equations (38)
and (50). In addition to the steps outlined in section V, a subtlety arises
in the implementation of this integrator in that the components of the
damper’s angular-momentum vector must be rotated by fk at the end of
each time step to keep them aligned with the spacecraft body frame.

IX. Numerical Examples
This section presents some numerical examples to demonstrate the per-
formance of the variational integrators derived in sections IV-VIII.
Comparisons are made to the 2nd order fixed-step midpoint rule and
MATLAB’s ODE45 and ODE15s variable-step Runge-Kutta solvers
with default error tolerances [24]. The computational cost of the mid-
point rule roughly equals that of the variational integrators. In all sim-
ulations, the following inertia matrix is used:

I =

1 0 0
0 2 0
0 0 3

 (68)

A. Free Rigid Body

The first test compares the energy and momentum behavior of the inte-
grator in section V with the midpoint rule and ODE45 by simulating a
free rigid body with an initial angular velocity ω0 = [π/4, −π/5, π/6]ᵀ
radians per second. The time steps for the midpoint rule and the varia-
tional integrator are chosen to be h = .2 seconds to make the run time
for both roughly equal to that of ODE45. Since this system is conser-
vative, both the inertial angular momentum vector components and the
total energy should remain constant throughout the simulation.
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Figure 1. Momentum error for a free rigid body
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Figure 2. Energy error for a free rigid body

Figure 1 shows the normalized momentum error magnitude for all
three integrators, and Figure 2 shows the normalized energy error. Fig-
ure 3 shows these errors for the variational integrator after continuing
the simulation for one million time steps. Together, all three demon-
strate the excellent conservation properties and long-term stability of
the variational integrator. The gradual accumulation of error shown in
Figure 3 is due to numerical round-off, and is an unavoidable conse-
quence of using finite-precision floating-point arithmetic.

While it is possible to achieve better momentum and energy con-
servation with traditional integrators by using smaller time steps and
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Figure 3. Long-term error for a free rigid body

higher-order methods, doing so can become prohibitively computation-
ally expensive for long integration times. The energy and momentum
behavior of the variational integrator produces qualitatively realistic
simulation results in cases where traditional integrators can produce
unphysical behavior.

B. Damped Rigid Body

The second test incorporates the spherical damper of section VIII into
the rigid body simulation. The damper inertia is set to ID = .2 and the
damping constant C is varied from 0.1 to 100. The midpoint rule is
not shown because it quickly diverges as C is increased and requires
extremely small step sizes to avoid divergence.
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Figure 4. Integrator running time

Figure 4 shows the running time of ODE45 with default error tol-
erances and the variational integrator with a step size of h = .3 seconds,
which is chosen so that the running times are roughly equal for small
values of C. As the damping constant increases, the magnitude of the
forces between the body and the damper increase and ODE45 must
shorten its time steps to maintain accuracy and avoid diverging. The
variational integrator, on the other hand, remains stable with a rela-
tively large fixed step size.

Figure 5 shows the total energy of the system over the course of a
simulation with C = 100. The variational integrator shows essentially
the same energy damping behavior as ODE45 on this dissipative sys-
tem while running over 50 times faster. Figure 6 shows the same simu-
lation again, but with MATLAB’s ODE15s solver, which is intended for
solving stiff systems, substituted for ODE45. ODE15s runs in roughly
the same time as the variational integrator on this problem but produces
obviously incorrect and unrealistic energy behavior, with the total en-
ergy increasing over time.
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Figure 5. Energy for rigid body with damper
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C. Extended Kalman Filter

The final test case demonstrates the advantages of variational integra-
tors in a real-time estimation application. A spacecraft attitude deter-
mination problem is simulated where a multiplicative extended Kalman
filter (MEKF) [25, 26] is used to estimate the attitude quaternion from
noisy measurements of two inertial reference vectors. This situation is
typical on CubeSats, for example, where magnetometer and sun vector
measurements are commonly used for attitude determination.

A simulated truth model is constructed by integrating the rigid
body equations of motion with initial conditions q0 = [0, 0, 0, 1]ᵀ and
ω0 = [4, −5, 6]ᵀ degrees per second using ODE45 in MATLAB. Sim-
ulated vector measurements are then generated and Gaussian noise is
added. Attitudes for filter initialization are computed from the first pair
of noisy measurement vectors using the TRIAD algorithm [27].

Figure 7 compares a standard MEKF to one using a variational in-
tegrator to perform its state prediction step. The two filters have nearly
identical performance at high sample rates but show very different be-
havior as the sample rate decreases. The underlying reason for this
performance difference is the quality of the linearizations that the vari-
ational integrator yields. Equation (38) and the corresponding Jacobian
of equation (36) lead to the true linearization of the map from φk to
φk+1:

∂φk+1

∂φk
=

(
∂pk

∂φk+1

)−1
∂pk

∂φk
(69)

This linearization is completely independent of the step size taken. As
a result, filters built around variational integrators are highly insensitive
to sample rate and can maintain good performance and convergence at
much lower rates than standard extended Kalman filters.

X. Conclusion
The integrators developed in this study offer physically realistic mo-
mentum and energy behavior while having modest computational
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Figure 7. Multiplicative extended Kalman filter RMS attitude error

costs. They consistently outperform Runge-Kutta schemes in a vari-
ety of tests on both conservative and non-conservative systems. High-
quality linearizations can also be computed as part of the integration
process, making the algorithms well suited for use in real-time estima-
tion and control applications like attitude filtering. Lastly, the methods
introduced are general and can be used to develop variational integra-
tors for a wide range of applications in spacecraft dynamics.
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